Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biocatalytic cascades operating on macromolecular scaffolds and in confined environments

Abstract

Biocatalytic cascades guide complex, efficient and selective intracellular transformations. These unique features originate from the spatial organization of the biocatalysts in confined cellular environments that allow the directional channelling of reaction intermediates across the cells. Here we address efforts directed towards the development of synthetic cell analogues and supramolecular ensembles acting as nano/microenvironments for operating biocatalytic cascades. Multienzyme systems are integrated within metal–organic frameworks, polymersomes, lipid-stabilized microdroplets and hydrogel microparticles acting as cell-like containments. Also, multienzyme systems are spatially positioned on one-dimensional DNA wires, two-dimensional DNA strips or origami tiles, and three-dimensional DNA origami bundles or cages, and specific protein–protein interactions or peptide–protein complexes provide versatile scaffolds for engineering enzyme assemblies. Biocatalytic cascades operating on these scaffolds or in confined nano/microenvironments reveal substantially enhanced reaction yields compared with the analogous diffusional mixtures of the biocomponents. Mechanistic pathways accounting for the enhanced biocatalytic activities and future challenges in developing and applying biocatalytic cascades are presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biocatalytic cascades in organized nano/microenvironments.
Fig. 2: Multienzyme cascades in MOF nanoparticles.
Fig. 3: Biocatalytic cascades driven in micro- and nanosized containments.
Fig. 4: Spatially controlled biocatalytic cascades operating on programmed nucleic acid scaffolds.
Fig. 5: Operation of biocatalytic cascades using 3D DNA scaffolds.
Fig. 6: Switching enzyme cascades in the presence of DNA nanostructures.
Fig. 7: Operation of biocatalytic cascades on protein scaffolds.
Fig. 8: Schematic presentation of reaction-intermediate channelling pathways in scaffolded bienzyme cascades.

Similar content being viewed by others

References

  1. Benetti, E. M., Gunnewiek, M. K., Van Blitterswijk, C. A., Julius Vancso, G. & Moroni, L. Mimicking natural cell environments: design, fabrication and application of bio-chemical gradients on polymeric biomaterial substrates. J. Mater. Chem. B 4, 4244–4257 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Tu, Y. et al. Mimicking the cell: bio-inspired functions of supramolecular assemblies. Chem. Rev. 116, 2023–2078 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Salehi-Reyhani, A., Ces, O. & Elani, Y. Artificial cell mimics as simplified models for the study of cell biology. Exp. Biol. Med. 242, 1309–1317 (2017).

    Article  CAS  Google Scholar 

  4. Sherman, S. E., Xiao, Q. & Percec, V. Mimicking complex biological membranes and their programmable glycan ligands with dendrimersomes and glycodendrimersomes. Chem. Rev. 117, 6538–6631 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Trantidou, T. et al. Engineering compartmentalized biomimetic micro- and nanocontainers. ACS Nano 11, 6549–6565 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Bollhorst, T., Rezwan, K. & Maas, M. Colloidal capsules: nano- and microcapsules with colloidal particle shells. Chem. Soc. Rev. 46, 2091–2126 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Rideau, E., Dimova, R., Schwille, P., Wurm, F. R. & Landfester, K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem. Soc. Rev. 47, 8572–8610 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Klermund, L. & Castiglione, K. Polymersomes as nanoreactors for preparative biocatalytic applications: current challenges and future perspectives. Bioprocess Biosyst. Eng. 41, 1233–1246 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Fanalista, F. et al. Shape and size control of artificial cells for bottom-up biology. ACS Nano 13, 5439–5450 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Saha, A. et al. In vitro reconstitution of a cell-like environment using liposomes for amyloid beta peptide aggregation and its propagation. Chem. Commun. 49, 6119–6121 (2013).

    Article  CAS  Google Scholar 

  11. Xie, J. et al. Oriented assembly of cell-mimicking nanoparticles via a molecular affinity strategy for targeted drug delivery. ACS Nano 13, 5268–5277 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Kreft, O., Prevot, M., Möhwald, H. & Sukhorukov, G. B. Shell-in-shell microcapsules: a novel tool for integrated, spatially confined enzymatic reactions. Angew. Chem. Int. Ed. 46, 5605–5608 (2007).

    Article  CAS  Google Scholar 

  13. Kozlovskaya, V., Baggett, J., Godin, B., Liu, X. & Kharlampieva, E. Hydrogen-bonded multilayers of silk fibroin: from coatings to cell-mimicking shaped microcontainers. ACS Macro Lett. 1, 384–387 (2012).

    Article  CAS  Google Scholar 

  14. She, S., Li, Q., Shan, B., Tong, W. & Gao, C. Fabrication of red-blood-cell-like polyelectrolyte microcapsules and their deformation and recovery behavior through a microcapillary. Adv. Mater. 25, 5814–5818 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, X. et al. Bioinspired approach to multienzyme cascade system construction for efficient carbon dioxide reduction. ACS Catal. 4, 962–972 (2014).

    Article  CAS  Google Scholar 

  16. Meng, F. & Zhong, Z. Polymersomes spanning from nano- to microscales: advanced vehicles for controlled drug delivery and robust vesicles for virus and cell mimicking. J. Phys. Chem. Lett. 2, 1533–1539 (2011).

    Article  CAS  Google Scholar 

  17. Marguet, M., Sandre, O. & Lecommandoux, S. Polymersomes in ‘gelly’ polymersomes: toward structural cell mimicry. Langmuir 28, 2035–2043 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, J. et al. DNA-mediated self-organization of polymeric nanocompartments leads to interconnected artificial organelles. Nano Lett. 16, 7128–7136 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Hu, X. et al. Stimuli-responsive polymersomes for biomedical applications. Biomacromolecules 18, 649–673 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, X., Formanek, P., Voit, B. & Appelhans, D. Functional cellular mimics for the spatiotemporal control of multiple enzymatic cascade reactions. Angew. Chem. Int. Ed. 56, 16233–16238 (2017).

    Article  CAS  Google Scholar 

  21. Larnaudie, S. C., Peyret, A., Beauté, L., Nassoy, P. & Lecommandoux, S. Photopolymerization-induced polymersome rupture. Langmuir 35, 8398–8403 (2019).

    CAS  PubMed  Google Scholar 

  22. Elani, Y., Gee, A., Law, R. V. & Ces, O. Engineering multi-compartment vesicle networks. Chem. Sci. 4, 3332–3338 (2013).

    Article  CAS  Google Scholar 

  23. Elani, Y., Solvas, X. C. I., Edel, J. B., Law, R. V. & Ces, O. Microfluidic generation of encapsulated droplet interface bilayer networks (multisomes) and their use as cell-like reactors. Chem. Commun. 52, 5961–5964 (2016).

    Article  CAS  Google Scholar 

  24. Karamdad, K. et al. Engineering thermoresponsive phase separated vesicles formed via emulsion phase transfer as a content-release platform. Chem. Sci. 9, 4851–4858 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bolognesi, G. et al. Sculpting and fusing biomimetic vesicle networks using optical tweezers. Nat. Commun. 9, 1882 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Comellas-Aragonès, M. et al. A virus-based single-enzyme nanoreactor. Nat. Nanotechnol. 2, 635–639 (2007).

    Article  PubMed  CAS  Google Scholar 

  27. Patterson, D. P., Schwarz, B., Waters, R. S., Gedeon, T. & Douglas, T. Encapsulation of an enzyme cascade within the bacteriophage P22 virus-like particle. ACS Chem. Biol. 9, 359–365 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Gao, X. et al. Rapid detection of exosomal microRNAs using virus-mimicking fusogenic vesicles. Angew. Chem. Int. Ed. 58, 8719–8723 (2019).

    Article  CAS  Google Scholar 

  29. Chang, F. P., Chen, Y. P. & Mou, C. Y. Intracellular implantation of enzymes in hollow silica nanospheres for protein therapy: cascade system of superoxide dismutase and catalase. Small 10, 4785–4795 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Godoy-Gallardo, M. et al. Multicompartment artificial organelles conducting enzymatic cascade reactions inside cells. ACS Appl. Mater. Interfaces 9, 15907–15921 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Rodríguez-Arco, L., Kumar, B. V. V. S. P., Li, M., Patil, A. J. & Mann, S. Modulation of higher-order behaviour in model protocell communities by artificial phagocytosis. Angew. Chem. Int. Ed. 58, 6333–6337 (2019).

    Article  CAS  Google Scholar 

  32. Olden, B. R. et al. Cell-templated silica microparticles with supported lipid bilayers as artificial antigen-presenting cells for T cell activation. Adv. Healthc. Mater. 8, 1801188 (2019).

    Article  CAS  Google Scholar 

  33. Ikezoe, Y., Washino, G., Uemura, T., Kitagawa, S. & Matsui, H. Autonomous motors of a metal–organic framework powered by reorganization of self-assembled peptides at interfaces. Nat. Mater. 11, 1081–1085 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Riccò, R. et al. Metal-organic frameworks for cell and virus biology: a perspective. ACS Nano 12, 13–23 (2018).

    Article  PubMed  CAS  Google Scholar 

  35. Ganta, S., Devalapally, H., Shahiwala, A. & Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 126, 187–204 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).

    Article  PubMed  CAS  Google Scholar 

  37. Dora Tang, T. Y. et al. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nat. Chem. 6, 527–533 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Ma, G. & Cheng, Q. Vesicular polydiacetylene sensor for colorimetric signaling of bacterial pore-forming toxin. Langmuir 21, 6123–6126 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Bally, M. et al. Liposome and lipid bilayer arrays towards biosensing applications. Small 6, 2481–2497 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Yildiz, U. H. et al. Third-party ATP sensing in polymersomes: a label-free assay of enzyme reactions in vesicular compartments. Small 10, 442–447 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Yu, J. et al. Hypoxia and H2O2 dual-sensitive vesicles for enhanced glucose-responsive insulin delivery. Nano Lett. 17, 733–739 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Mohammad, M., Razmjou, A., Liang, K., Asadnia, M. & Chen, V. Metal-organic-framework-based enzymatic microfluidic biosensor via surface patterning and biomineralization. ACS Appl. Mater. Interfaces 11, 1807–1820 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, H. et al. Artificial signal feedback network mimicking cellular adaptivity. J. Am. Chem. Soc. 141, 6458–6461 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, J., Yang, Q. & Li, C. Towards efficient chemical synthesis via engineering enzyme catalysis in biomimetic nanoreactors. Chem. Commun. 51, 13731–13739 (2015).

    Article  CAS  Google Scholar 

  46. Küchler, A., Yoshimoto, M., Luginbühl, S., Mavelli, F. & Walde, P. Enzymatic reactions in confined environments. Nat. Nanotechnol. 11, 409–420 (2016).

    Article  PubMed  CAS  Google Scholar 

  47. Quin, M. B., Wallin, K. K., Zhang, G. & Schmidt-Dannert, C. Spatial organization of multi-enzyme biocatalytic cascades. Org. Biomol. Chem. 15, 4260–4271 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Sipponen, M. H. et al. Spatially confined lignin nanospheres for biocatalytic ester synthesis in aqueous media. Nat. Commun. 9, 2300 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zakharchenko, A., Guz, N., Laradji, A. M., Katz, E. & Minko, S. Magnetic field remotely controlled selective biocatalysis. Nat. Catal. 1, 73–81 (2018).

    Article  Google Scholar 

  50. Nishimura, T. & Akiyoshi, K. Biotransporting biocatalytic reactors toward therapeutic nanofactories. Adv. Sci. 5, 1800801 (2018).

    Article  CAS  Google Scholar 

  51. Hwang, E. T. & Lee, S. Multienzymatic cascade reactions via enzyme complex by immobilization. ACS Catal. 9, 4402–4425 (2019).

    Article  CAS  Google Scholar 

  52. Roh, Y. H., Ruiz, R. C. H., Peng, S., Lee, J. B. & Luo, D. Engineering DNA-based functional materials. Chem. Soc. Rev. 40, 5730–5744 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, F., Liu, X. & Willner, I. DNA switches: from principles to applications. Angew. Chem. Int. Ed. 54, 1098–1129 (2015).

    Article  CAS  Google Scholar 

  54. Hu, Y., Cecconello, A., Idili, A., Ricci, F. & Willner, I. Triplex DNA nanostructures: from basic properties to applications. Angew. Chem. Int. Ed. 56, 15210–15233 (2017).

    Article  CAS  Google Scholar 

  55. Zhao, Z., Liu, Y. & Yan, H. Organizing DNA origami tiles into larger structures using preformed scaffold frames. Nano Lett. 11, 2997–3002 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fu, Y. et al. Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors. J. Am. Chem. Soc. 135, 696–702 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Lin, M. et al. Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. Angew. Chem. Int. Ed. 54, 2151–2155 (2015).

    Article  CAS  Google Scholar 

  58. He, L. et al. mRNA-initiated, three-dimensional DNA amplifier able to function inside living cells. J. Am. Chem. Soc. 140, 258–263 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, D., Chai, Y., Yuan, Y. & Yuan, R. Precise regulation of enzyme cascade catalytic efficiency with DNA tetrahedron as scaffold for ultrasensitive electrochemical detection of DNA. Anal. Chem. 91, 3561–3566 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Peng, P., Du, Y., Zheng, J., Wang, H. & Li, T. Reconfigurable bioinspired framework nucleic acid nanoplatform dynamically manipulated in living cells for subcellular imaging. Angew. Chem. Int. Ed. 58, 1648–1653 (2019).

    Article  CAS  Google Scholar 

  61. Tanaka, F. et al. Robust and photocontrollable DNA capsules using azobenzenes. Nano Lett. 10, 3560–3565 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Cecconello, A., Besteiro, L. V., Govorov, A. O. & Willner, I. Chiroplasmonic DNA-based nanostructures. Nat. Rev. Mater. 2, 17039 (2017).

    Article  CAS  Google Scholar 

  63. Xu, Y. et al. Tunable nanoscale cages from self-assembling DNA and protein building blocks. ACS Nano 13, 3545–3554 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Lu, C. H. & Willner, I. Stimuli-responsive DNA-functionalized nano-/microcontainers for switchable and controlled release. Angew. Chem. Int. Ed. 54, 12212–12235 (2015).

    Article  CAS  Google Scholar 

  65. Liao, W. C. & Willner, I. Synthesis and applications of stimuli-responsive DNA-based nano- and micro-sized capsules. Adv. Funct. Mater. 27, 1702732 (2017).

    Article  CAS  Google Scholar 

  66. Chen, W. H. et al. Stimuli-responsive nucleic acid-based polyacrylamide hydrogel-coated metal–organic framework nanoparticles for controlled drug release. Adv. Funct. Mater. 28, 1705137 (2018).

    Article  CAS  Google Scholar 

  67. Vázquez-González, M. & Willner, I. DNA-responsive SiO2 nanoparticles, metal–organic frameworks, and microcapsules for controlled drug release. Langmuir 34, 14692–14710 (2018).

    Article  PubMed  CAS  Google Scholar 

  68. Liao, W. C., Riutin, M., Parak, W. J. & Willner, I. Programmed pH-responsive microcapsules for the controlled release of CdSe/ZnS quantum dots. ACS Nano 10, 8683–8689 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Kahn, J. S., Freage, L., Enkin, N., Garcia, M. A. A. & Willner, I. Stimuli-responsive DNA-functionalized metal–organic frameworks (MOFs). Adv. Mater. 29, 1602782 (2017).

    Article  CAS  Google Scholar 

  70. Liao, W. C. et al. pH- and ligand-induced release of loads from DNA-acrylamide hydrogel microcapsules. Chem. Sci. 8, 3362–3373 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Huang, F. et al. Light-responsive and pH-responsive DNA microcapsules for controlled release of loads. J. Am. Chem. Soc. 138, 8936–8945 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Veetil, A. T. et al. Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules. Nat. Nanotechnol. 12, 1183–1189 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Chen, W. H. et al. Stimuli-responsive nucleic acid-functionalized metal–organic framework nanoparticles using pH- and metal-ion-dependent DNAzymes as locks. Chem. Sci. 8, 5769–5780 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liao, W. C. et al. Adenosine triphosphate-triggered release of macromolecular and nanoparticle loads from aptamer/DNA-cross-linked microcapsules. ACS Nano 9, 9078–9086 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Liao, W. C. et al. The application of stimuli-responsive VEGF- and ATP-aptamer-based microcapsules for the controlled release of an anticancer drug, and the selective targeted cytotoxicity toward cancer cells. Adv. Funct. Mater. 26, 4262–4273 (2016).

    Article  CAS  Google Scholar 

  76. Zhang, Z., Balogh, D., Wang, F. & Willner, I. Smart mesoporous SiO2 nanoparticles for the DNAzyme-induced multiplexed release of substrates. J. Am. Chem. Soc. 135, 1934–1940 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Zhang, Z., Wang, F., Sohn, Y. S., Nechushtai, R. & Willner, I. Gated mesoporous SiO2 nanoparticles using K+-stabilized G-quadruplexes. Adv. Funct. Mater. 24, 5662–5670 (2014).

    Article  CAS  Google Scholar 

  78. Balogh, D., Garcia, M. A. A., Albada, H. B. & Willner, I. Programmed synthesis by stimuli-responsive DNAzyme-modified mesoporous SiO2 nanoparticles. Angew. Chem. Int. Ed. 54, 11652–11656 (2015).

    Article  CAS  Google Scholar 

  79. Meng, H. M. et al. DNA dendrimer: an efficient nanocarrier of functional nucleic acids for intracellular molecular sensing. ACS Nano 8, 6171–6181 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang, X. et al. Stimuli-responsive DNA microcapsules for SERS sensing of trace microRNA. ACS Appl. Mater. Interfaces 10, 12491–12496 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Bhatia, D., Surana, S., Chakraborty, S., Koushika, S. P. & Krishnan, Y. A synthetic icosahedral DNA-based cargo complex for functional in vivo imaging. Nat. Commun. 2, 339 (2011).

    Article  PubMed  CAS  Google Scholar 

  82. Kuzyk, A. et al. Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13, 862–866 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Zhou, C., Duan, X. & Liu, N. A plasmonic nanorod that walks on DNA origami. Nat. Commun. 6, 8102 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Urban, M. J., Zhou, C., Duan, X. & Liu, N. Optically resolving the dynamic walking of a plasmonic walker couple. Nano Lett. 15, 8392–8396 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Fierobe, H. P. et al. Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin. J. Biol. Chem. 280, 16325–16334 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Lin, J. L., Zhu, J. & Wheeldon, I. Synthetic protein scaffolds for biosynthetic pathway colocalization on lipid droplet membranes. ACS Synth. Biol. 6, 1534–1544 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Dueber, J. E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27, 753–759 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690–E697 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Veggiani, G. et al. Programmable polyproteams built using twin peptide superglues. Proc. Natl Acad. Sci. USA 113, 1202–1207 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wheeldon, I. et al. Substrate channelling as an approach to cascade reactions. Nat. Chem. 8, 299–309 (2016). A comprehensive review discussing substrate channelling as a mechanistic pathway of cascaded reactions.

    Article  CAS  PubMed  Google Scholar 

  91. Fu, J., Liu, M., Liu, Y. & Yan, H. Spatially-interactive biomolecular networks organized by nucleic acid nanostructures. Acc. Chem. Res. 45, 1215–1226 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Linko, V. et al. DNA-based enzyme reactors and systems. Nanomaterials 6, 139 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  93. Rabe, K. S., Müller, J., Skoupi, M. & Niemeyer, C. M. Cascades in compartments: en route to machine-assisted biotechnology. Angew. Chem. Int. Ed. 56, 13574–13589 (2017).

    Article  CAS  Google Scholar 

  94. Wang, S. Z. et al. Strategies and perspectives of assembling multi-enzyme systems. Crit. Rev. Biotechnol. 37, 1024–1037 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Shi, J. et al. Bioinspired construction of multi-enzyme catalytic systems. Chem. Soc. Rev. 47, 4295–4313 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Liu, Z. et al. Bioinspired dual-enzyme colloidosome reactors for high-performance biphasic catalysis. ACS Appl. Mater. Interfaces 10, 41504–41511 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Yang, Y. et al. Stepwise degradable nanocarriers enabled cascade delivery for synergistic cancer therapy. Adv. Funct. Mater. 28, 1800706 (2018).

    Article  CAS  Google Scholar 

  98. Wang, G. L. et al. A novel photoswitchable enzyme cascade for powerful signal amplification in versatile bioassays. Chem. Commun. 53, 11165–11168 (2017).

    Article  CAS  Google Scholar 

  99. Riedel, M., Parak, W. J., Ruff, A., Schuhmann, W. & Lisdat, F. Light as trigger for biocatalysis: photonic wiring of flavin adenine dinucleotide-dependent glucose dehydrogenase to quantum dot-sensitized inverse opal TiO2 architectures via redox polymers. ACS Catal. 8, 5212–5220 (2018).

    Article  CAS  Google Scholar 

  100. Lian, X., Chen, Y. P., Liu, T. F. & Zhou, H. C. Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF. Chem. Sci. 7, 6969–6973 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Huang, Y. et al. Growth of Au nanoparticles on 2D metalloporphyrinic metal–organic framework nanosheets used as biomimetic catalysts for cascade reactions. Adv. Mater. 29, 11700102 (2017).

    Google Scholar 

  102. Liu, X. et al. Two-dimensional metal-organic framework/enzyme hybrid nanocatalyst as a benign and self-activated cascade reagent for in vivo wound healing. ACS Nano 13, 5222–5230 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Liu, X., Qi, W., Wang, Y., Su, R. & He, Z. A facile strategy for enzyme immobilization with highly stable hierarchically porous metal–organic frameworks. Nanoscale 9, 17561–17570 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Cheng, K., Svec, F., Lv, Y. & Tan, T. Hierarchical micro‐ and mesoporous Zn‐based metal–organic frameworks templated by hydrogels: their use for enzyme immobilization and catalysis of Knoevenagel reaction. Small 15, 1902927 (2019).

    Article  CAS  Google Scholar 

  105. Chen, W. H., Vázquez-González, M., Zoabi, A., Abu-Reziq, R. & Willner, I. Biocatalytic cascades driven by enzymes encapsulated in metal–organic framework nanoparticles. Nat. Catal. 1, 689–695 (2018). The study demonstrates the encapsulation of a three-enzyme cascade in porous metal–organic framework nanoparticles.

    Article  CAS  Google Scholar 

  106. Liang, J. et al. Peptide-induced super-assembly of biocatalytic metal–organic frameworks for programmed enzyme cascades. Chem. Sci. 10, 7852–7858 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vriezema, D. M. et al. Positional assembly of enzymes in polymersome nanoreactors for cascade reactions. Angew. Chem. Int. Ed. 46, 7378–7382 (2007).

    Article  CAS  Google Scholar 

  108. Van Dongen, S. F. M., Nallani, M., Cornelissen, J. J. L. M., Nolte, R. J. M. & Van Hest, J. C. M. A three-enzyme cascade reaction through positional assembly of enzymes in a polymersome nanoreactor. Chem. Eur. J. 15, 1107–1114 (2009).

    Article  PubMed  CAS  Google Scholar 

  109. Peters, R. J. R. W. et al. Cascade reactions in multicompartmentalized polymersomes. Angew. Chem. Int. Ed. 53, 146–150 (2014).

    Article  CAS  Google Scholar 

  110. Gräfe, D., Gaitzsch, J., Appelhans, D. & Voit, B. Cross-linked polymersomes as nanoreactors for controlled and stabilized single and cascade enzymatic reactions. Nanoscale 6, 10752–10761 (2014).

    Article  PubMed  CAS  Google Scholar 

  111. Rifaie-Graham, O. et al. Wavelength-selective light-responsive DASA-functionalized polymersome nanoreactors. J. Am. Chem. Soc. 140, 8027–8036 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Elani, Y., Law, R. V. & Ces, O. Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways. Nat. Commun. 5, 5305 (2014). The study describes the preparation of inter-connected lipid-stabilized microdroplets loaded with three enzymes and the operation of a multi-enzyme cascade in the ensemble.

    Article  CAS  PubMed  Google Scholar 

  113. Xiang, B. et al. Self-assembled DNA hydrogel based on enzymatically polymerized DNA for protein encapsulation and enzyme/DNAzyme hybrid cascade reaction. ACS Appl. Mater. Interfaces 8, 22801–22807 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Tan, H. et al. Heterogeneous multi-compartmental hydrogel particles as synthetic cells for incompatible tandem reactions. Nat. Commun. 8, 663 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Wang, H. et al. Biomimetic enzyme cascade reaction system in microfluidic electrospray microcapsules. Sci. Adv. 4, eaat2816 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Wu, Q. et al. Cascade enzymes within self-assembled hybrid nanogel mimicked neutrophil lysosomes for singlet oxygen elevated cancer therapy. Nat. Commun. 10, 240 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Müller, J. & Niemeyer, C. M. DNA-directed assembly of artificial multienzyme complexes. Biochem. Biophys. Res. Commun. 377, 62–67 (2008).

    Article  PubMed  CAS  Google Scholar 

  118. Wilner, O. I., Shimron, S., Weizmann, Y., Wang, Z. & Willner, I. Self-assembly of enzymes on DNA scaffolds: en route to biocatalytic cascades and the synthesis of metallic nanowires. Nano Lett. 9, 2040–2043 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Wang, Z. G., Wilner, O. I. & Willner, I. Self-assembly of aptamer circular DNA nanostructures for controlled biocatalysis. Nano Lett. 9, 4098–4102 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Wilner, O. I. et al. Enzyme cascades activated on topologically programmed DNA scaffolds. Nat. Nanotechnol. 4, 249–254 (2009). The study presents the intercommunication of enzyme cascades on 2D DNA strips.

    Article  CAS  PubMed  Google Scholar 

  121. Fu, J., Liu, M., Liu, Y., Woodbury, N. W. & Yan, H. Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J. Am. Chem. Soc. 134, 5516–5519 (2012). The study introduces the intercommunication between two enzymes positioned on an origami tile and discusses the separation distance on the efficiency of intermediate chanelling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ngo, T. A., Nakata, E., Saimura, M. & Morii, T. Spatially organized enzymes drive cofactor-coupled cascade reactions. J. Am. Chem. Soc. 138, 3012–3021 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Fu, J. et al. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nat. Nanotechnol. 9, 531–536 (2014). The study introduces the NAD +-cofactor-mediated communication of enzymes on a spatially organized three-dimensional origami bundle.

    Article  CAS  PubMed  Google Scholar 

  124. Zhao, Z. et al. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion. Nat. Commun. 7, 10619 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hindley, J. W. et al. Light-triggered enzymatic reactions in nested vesicle reactors. Nat. Commun. 9, 1093 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Hirsch, R., Katz, E. & Willner, I. Magneto-switchable bioelectrocatalysis. J. Am. Chem. Soc. 122, 12053–12054 (2000).

    Article  CAS  Google Scholar 

  127. Katz, E., Lioubashevski, O. & Willner, I. Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems: enhanced performance of biofuel cells. J. Am. Chem. Soc. 127, 3979–3988 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Guo, W. et al. Switchable bifunctional stimuli-triggered poly-N-isopropylacrylamide/DNA hydrogels. Angew. Chem. Int. Ed. 53, 10134–10138 (2014).

    Article  CAS  Google Scholar 

  129. Hu, Y. et al. Reversible modulation of DNA-based hydrogel shapes by internal stress interactions. J. Am. Chem. Soc. 138, 16112–16119 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Wang, C., Fadeev, M., Vázquez-González, M. & Willner, I. Stimuli-responsive donor-acceptor and DNA-crosslinked hydrogels: application as shape-memory and self-healing materials. Adv. Funct. Mater. 28, 1803111 (2018).

    Article  CAS  Google Scholar 

  131. Wang, C. et al. Shape-memory and self-healing functions of DNA-based carboxymethyl cellulose hydrogels driven by chemical or light triggers. Chem. Sci. 9, 7145–7152 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu, X. et al. Chemical and photochemical DNA ‘gears’ reversibly control stiffness, shape-memory, self-healing and controlled release properties of polyacrylamide hydrogels. Chem. Sci. 10, 1008–1016 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Simmel, F. C., Yurke, B. & Singh, H. R. Principles and applications of nucleic acid strand displacement reactions. Chem. Rev. 119, 6326–6369 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Seeman, N. C. From genes to machines: DNA nanomechanical devices. Trends Biochem. Sci. 30, 119–125 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bath, J. & Turberfield, A. J. DNA nanomachines. Nat. Nanotechnol. 2, 275–284 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Liu, X., Lu, C. H. & Willner, I. Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines. Acc. Chem. Res. 47, 1673–1680 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Xin, L., Zhou, C., Yang, Z. & Liu, D. Regulation of an enzyme cascade reaction by a DNA machine. Small 9, 3088–3091 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Hu, Y. et al. Switchable enzyme/DNAzyme cascades by the reconfiguration of DNA nanostructures. Chem. Eur. J. 20, 16203–16209 (2014). The study introduces the switchable operation of a three-biocatalyst cascade using a DNA tweezer scaffold as driving machinary.

    Article  CAS  PubMed  Google Scholar 

  139. Chen, Y. et al. A synthetic light-driven substrate channeling system for precise regulation of enzyme cascade activity based on DNA origami. J. Am. Chem. Soc. 140, 8990–8996 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Ke, G. et al. Directional regulation of enzyme pathways through the control of substrate channeling on a DNA origami scaffold. Angew. Chem. Int. Ed. 55, 7483–7486 (2016).

    Article  CAS  Google Scholar 

  141. Yang, Y. et al. Programming rotary motions with a hexagonal DNA nanomachine. Chem. Eur. J. 25, 5158–5162 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Roy, J. J. & Abraham, T. E. Strategies in making cross-linked enzyme crystals. Chem. Rev. 104, 3705–3721 (2004).

    Article  CAS  Google Scholar 

  143. Shuvaev, V. V., Dziubla, T., Wiewrodt, R. & Muzykantov, V. R. Streptavidin-biotin crosslinking of therapeutic enzymes with carrier antibodies: nanoconjugates for protection against endothelial oxidative stress. Methods Mol. Biol. 283, 3–19 (2004).

    CAS  PubMed  Google Scholar 

  144. Zhang, Y., Yong, Y., Ge, J. & Liu, Z. Lectin agglutinated multienzyme catalyst with enhanced substrate affinity and activity. ACS Catal. 6, 3789–3795 (2016).

    Article  CAS  Google Scholar 

  145. Zhang, G., Quin, M. B. & Schmidt-Dannert, C. Self-assembling protein scaffold system for easy in vitro coimmobilization of biocatalytic cascade enzymes. ACS Catal. 8, 5611–5620 (2018).

    Article  CAS  Google Scholar 

  146. Liu, Z., Cao, S., Liu, M., Kang, W. & Xia, J. Self-assembled multienzyme nanostructures on synthetic protein scaffolds. ACS Nano 13, 11343–11352 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. You, C., Myung, S. & Zhang, Y. H. P. Facilitated substrate channeling in a self-assembled trifunctional enzyme complex. Angew. Chem. Int. Ed. 51, 8787–8790 (2012). The study introduces a cellulosome comprising of specific cohesion domains to organize and operate a three-enzyme cascade.

    Article  CAS  Google Scholar 

  148. Liu, F., Banta, S. & Chen, W. Functional assembly of a multi-enzyme methanol oxidation cascade on a surface-displayed trifunctional scaffold for enhanced NADH production. Chem. Commun. 49, 3766–3768 (2013).

    Article  CAS  Google Scholar 

  149. Qu, J. et al. Synthetic multienzyme complexes, catalytic nanomachineries for cascade biosynthesis in vivo. ACS Nano 13, 9895–9906 (2019). The study describes a versatile concept to genetically engineer enzymes with peptide tags for the organization of supramolecular structures or catcher anchor proteins.

    Article  CAS  PubMed  Google Scholar 

  150. Idan, O. & Hess, H. Engineering enzymatic cascades on nanoscale scaffolds. Curr. Opin. Biotechnol. 24, 606–611 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Ellis, G. A. et al. Artificial multienzyme scaffolds: Pursuing in vitro substrate channeling with an overview of current progress. ACS Catal. 9, 10812–10869 (2019). A comprehensive review article discussing mechanistic aspects related to cascaded reactions.

    Article  CAS  Google Scholar 

  152. Chen, R. et al. Biomolecular scaffolds for enhanced signaling and catalytic efficiency. Curr. Opin. Biotechnol. 28, 59–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Idan, O. & Hess, H. Diffusive transport phenomena in artificial enzyme cascades on scaffolds. Nat. Nanotechnol. 7, 769–770 (2012). A study disccusing diffusive intermediate transport phenomena in cascaded multi-enzyme catalysis.

    Article  CAS  PubMed  Google Scholar 

  155. Idan, O. & Hess, H. Origins of activity enhancement in enzyme cascades on scaffolds. ACS Nano 7, 8658–8665 (2013). The study introduces the concept of affinity concentration of the intermediate as pathway to enhance enzyme cascades.

    Article  CAS  PubMed  Google Scholar 

  156. Zhang, Y. & Hess, H. Toward rational design of high-efficiency enzyme cascades. ACS Catal. 7, 6018–6027 (2017).

    Article  CAS  Google Scholar 

  157. Lin, J. L., Palomec, L. & Wheeldon, I. Design and analysis of enhanced catalysis in scaffolded multienzyme cascade reactions. ACS Catal. 4, 505–511 (2014).

    Article  CAS  Google Scholar 

  158. Lancaster, L., Abdallah, W., Banta, S. & Wheeldon, I. Engineering enzyme microenvironments for enhanced biocatalysis. Chem. Soc. Rev. 47, 5177–5186 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Fu, J., Liu, M., Liu, Y., Woodbury, N. W. & Yan, H. Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J. Am. Chem. Soc. 134, 5516–5519 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sweetlove, L. J. & Fernie, A. R. The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation. Nat. Commun. 9, 2136 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Poshyvailo, L., Von Lieres, E. & Kondrat, S. Does metabolite channeling accelerate enzyme-catalyzed cascade reactions? PLoS ONE 12, e0172673 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Lin, J. L. & Wheeldon, I. Kinetic enhancements in DNA-enzyme nanostructures mimic the sabatier principle. ACS Catal. 3, 560–564 (2013). A study discussing affinity interaction to enhance intercommunication of enzymes.

    Article  CAS  Google Scholar 

  163. Spivey, H. O. & Ovádi, J. Substrate channeling. Methods 19, 306–321 (1999).

    Article  CAS  PubMed  Google Scholar 

  164. Roberts, C. C. & Chang, C. E. A. Modeling of enhanced catalysis in multienzyme nanostructures: effect of molecular scaffolds, spatial organization, and concentration. J. Chem. Theory Comput. 11, 286–292 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Yong, Y., Pingkai, O., Wu, J. & Liu, Z. A diffusion–reaction model for one-pot synthesis of chemicals with enzyme cascades. ChemCatChem. 12, 528–535 (2020).

    Article  CAS  Google Scholar 

  166. Zhang, Y., Tsitkov, S. & Hess, H. Proximity does not contribute to activity enhancement in the glucose oxidase-horseradish peroxidase cascade. Nat. Commun. 7, 13982 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Medintz, I. Universal tools for biomolecular attachment to surfaces. Nat. Mater. 5, 842 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Yue, L., Wang, S., Wulf, V. & Willner, I. Stiffness-switchable DNA-based constitutional dynamic network hydrogels for self-healing and matrix-guided controlled chemical processes. Nat. Commun. 10, 4774 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Tsitkov, S. & Hess, H. Design principles for a compartmentalized enzyme cascade reaction. ACS Catal. 9, 2432–2439 (2019).

    Article  CAS  Google Scholar 

  170. Wu, J., Li, S. & Wei, H. Integrated nanozymes: facile preparation and biomedical applications. Chem. Commun. 54, 6520–6530 (2018).

    Article  CAS  Google Scholar 

  171. Bugada, L. F., Smith, M. R. & Wen, F. Engineering spatially organized multienzyme assemblies for complex chemical transformation. ACS Catal. 8, 7898–7906 (2018).

    Article  CAS  Google Scholar 

  172. Freeman, R., Sharon, E., Tel-Vered, R. & Willner, I. Supramolecular cocaine-aptamer complexes activate biocatalytic cascades. J. Am. Chem. Soc. 131, 5028–5029 (2009).

    Article  CAS  PubMed  Google Scholar 

  173. Katz, E. & Privman, V. Enzyme-based logic systems for information processing. Chem. Soc. Rev. 39, 1835–1857 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Baron, R., Lioubashevski, O., Katz, E., Niazov, T. & Willner, I. Logic gates and elementary computing by enzymes. J. Phys. Chem. A 110, 8548–8553 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Wang, F., Lu, C. H. & Willner, I. From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem. Rev. 114, 2881–2941 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Ohara, T. J., Rajagopalan, R. & Heller, A. “Wired” enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances. Anal. Chem. 66, 2451–2457 (1994).

    Article  CAS  PubMed  Google Scholar 

  177. Trifonov, A. et al. Enzyme-capped relay-functionalized mesoporous carbon nanoparticles: effective bioelectrocatalytic matrices for sensing and biofuel cell applications. ACS Nano 7, 11358–11368 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Tanner, P., Balasubramanian, V. & Palivan, C. G. Aiding nature’s organelles: artificial peroxisomes play their role. Nano Lett. 13, 2875–2883 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our research on biocatalytic transformations on confined media is supported by the Volkswagen Foundation, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itamar Willner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez-González, M., Wang, C. & Willner, I. Biocatalytic cascades operating on macromolecular scaffolds and in confined environments. Nat Catal 3, 256–273 (2020). https://doi.org/10.1038/s41929-020-0433-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-0433-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing