Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production

Abstract

The worldwide replacement of the toxic mercuric chloride catalyst in vinyl chloride manufacture via acetylene hydrochlorination is slowed by the limited durability of alternative catalytic systems at high space velocities. Here, we demonstrate that platinum single atoms on carbon carriers are substantially more stable (up to 1,073 K) than their gold counterparts (up to 473 K), enabling facile and scalable preparation and precise tuning of their coordination environment by simple temperature control. By combining kinetic analysis, advanced characterization, and density functional theory, we assess how the Pt species determines the catalytic performance and thereby identify Pt(ii)−Cl as the active site, being three times more active than Pt nanoparticles. We show that Pt single atoms exhibit outstanding stability in acetylene hydrochlorination and surpass the space–time yields of their gold-based analogues after 25 h time-on-stream, qualifying them as a candidate for sustainable vinyl chloride production.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Synthesis and characterization of carbon-supported Pt catalysts.
Fig. 2: Stability of Pt and Au single atoms on carbon carriers.
Fig. 3: Activity descriptors for Pt catalysts.
Fig. 4: Relationship between the stability of the single-atom species and their ability to adsorb and activate acetylene.
Fig. 5: Reaction pathway for acetylene hydrochlorination over distinct Pt sites.
Fig. 6: Catalyst stability and deactivation.
Fig. 7: Coke formation over the AC or NC carrier.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. The DFT structures can be retrieved from the ioChem-BD database56.

References

  1. 1.

    Zhang, Z. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 8, 16100 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Zhang, L. et al. Single-atom catalyst: a rising star for green synthesis of fine chemicals. Natl Sci. Rev. 5, 653–672 (2018).

    CAS  Google Scholar 

  3. 3.

    Zhang, J. & Alexandrova, A. N. The golden crown: a single Au atom that boosts the CO oxidation catalyzed by a palladium cluster on titania surfaces. J. Phys. Chem. Lett. 4, 2250–2255 (2013).

    CAS  Google Scholar 

  4. 4.

    Yang, M. & Flytzani-Stephanopoulos, M. Design of single-atom metal catalysts on various supports for the low-temperature water-gas shift reaction. Catal. Today 298, 216–225 (2017).

    CAS  Google Scholar 

  5. 5.

    Zhang, B. et al. Atomically dispersed Pt1-polyoxometalate catalysts: how does metal-support interaction affect stability and hydrogenation activity? J. Am. Chem. Soc. 141, 8185–8197 (2019).

    CAS  PubMed  Google Scholar 

  6. 6.

    Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    CAS  Google Scholar 

  7. 7.

    Li, M. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2, 495–503 (2019).

    CAS  Google Scholar 

  8. 8.

    Xu, H., Cheng, D., Cao, D. & Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 1, 339–348 (2018).

    CAS  Google Scholar 

  9. 9.

    Kaiser, S. K. et al. Controlling the speciation and reactivity of carbon-supported gold nanostructures for catalysed acetylene hydrochlorination. Chem. Sci. 10, 359–369 (2019).

    CAS  PubMed  Google Scholar 

  10. 10.

    Lin, R. et al. Design of single gold atoms on nitrogen-doped carbon for molecular recognition in alkyne semi-hydrogenation. Angew. Chem. Int. Ed. 58, 504–509 (2019).

    CAS  Google Scholar 

  11. 11.

    Yin, X. P. et al. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 57, 9382–9386 (2018).

    CAS  Google Scholar 

  12. 12.

    Liu, W. et al. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C-H bond. J. Am. Chem. Soc. 139, 10790–10798 (2017).

    CAS  PubMed  Google Scholar 

  13. 13.

    Wang, X. et al. Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2. Angew. Chem. Int. Ed. 57, 1944–1948 (2018).

    CAS  Google Scholar 

  14. 14.

    Mitchell, S., Vorobyeva, E. & Pérez-Ramírez, J. The multifaceted reactivity of single-atom heterogeneous catalysts. Angew. Chem. Int. Ed. 57, 15316–15329 (2018).

    CAS  Google Scholar 

  15. 15.

    Lin, R., Amrute, A. P. & Pérez-Ramírez, J. Halogen-mediated conversion of hydrocarbons to commodities. Chem. Rev. 117, 4182–4247 (2017).

    CAS  PubMed  Google Scholar 

  16. 16.

    Zhu, M. et al. Development of a heterogeneous non-mercury catalyst for acetylene hydrochlorination. ACS Catal. 5, 5306–5316 (2015).

    CAS  Google Scholar 

  17. 17.

    Zhong, J., Xu, Y. & Liu, Z. Heterogeneous non-mercury catalysts for acetylene hydrochlorination: progress, challenges, and opportunities. Green Chem. 20, 2412–2427 (2018).

    CAS  Google Scholar 

  18. 18.

    United Nations Environment Programme. Minamata Convention on Mercury www.mercuryconvention.org/ (accessed August 2019).

  19. 19.

    Malta, G., Freakley, S. J., Kondrat, S. A. & Hutchings, G. J. Acetylene hydrochlorination using Au/carbon: a journey towards single site catalysis. Chem. Commun. 53, 11733–11746 (2017).

    CAS  Google Scholar 

  20. 20.

    Johnston, P., Carthey, N. & Hutchings, G. J. Discovery, development, and commercialization of gold catalysts for acetylene hydrochlorination. J. Am. Chem. Soc. 137, 14548–14557 (2015).

    CAS  PubMed  Google Scholar 

  21. 21.

    Shang, S. et al. Highly efficient Ru@IL/AC to substitute mercuric catalyst for acetylene hydrochlorination. ACS Catal. 7, 3510–3520 (2017).

    CAS  Google Scholar 

  22. 22.

    Malta, G. et al. Identification of single-site gold catalysis in acetylene hydrochlorination. Science 355, 1399–1403 (2017).

    CAS  PubMed  Google Scholar 

  23. 23.

    Malta, G. et al. Deactivation of a single-site gold-on-carbon acetylene hydrochlorination catalyst: an X-ray absorption and inelastic neutron scattering study. ACS Catal. 8, 8493–8505 (2018).

    CAS  Google Scholar 

  24. 24.

    Ye, L. et al. Self-regeneration of Au/CeO2 based catalysts with enhanced activity and ultra-stability for acetylene hydrochlorination. Nat. Commun. 10, 914 (2019).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Kaiser, S. K. et al. Preserved in a shell: the high performance of graphene-confined ruthenium nanoparticles in acetylene hydrochlorination. Angew. Chem. Int. Ed. 58, 12297–12304 (2019).

    CAS  Google Scholar 

  26. 26.

    Zhou, K. et al. A low content Au-based catalyst for hydrochlorination of C2H2 and its industrial scale-up for future PVC processes. Green Chem. 17, 356–364 (2015).

    CAS  Google Scholar 

  27. 27.

    Conte, M. et al. Hydrochlorination of acetylene using supported bimetallic Au-based catalysts. J. Catal. 257, 190–198 (2008).

    CAS  Google Scholar 

  28. 28.

    Figueroba, A., Kovács, G., Bruix, A. & Neyman, K. M. Towards stable single-atom catalysts: strong binding of atomically dispersed transition metals on the surface of nanostructured ceria. Catal. Sci. Technol. 6, 6806–6813 (2016).

    CAS  Google Scholar 

  29. 29.

    Pierre, D., Deng, W. & Flytzani-Stephanopoulos, M. The importance of strongly bound Pt–CeOx species for the water-gas shift reaction: catalyst activity and stability evaluation. Top. Catal. 46, 363–373 (2007).

    CAS  Google Scholar 

  30. 30.

    O’Connor, N. J., Jonayat, A. S. M., Janik, M. J. & Senftle, T. P. Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nat. Catal. 1, 531–539 (2018).

    Google Scholar 

  31. 31.

    Daelman, N., Capdevila-Cortada, M. & López, N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat. Mater. 18, 1215–1221 (2019).

  32. 32.

    Leyva-Pérez, A. & Corma, A. Similarities and differences between the “relativistic” triad gold, platinum, and mercury in catalysis. Angew. Chem. Int. Ed. 51, 614–635 (2012).

    Google Scholar 

  33. 33.

    London Bullion Market Association (LBMA). Precious metal prices. http://www.lbma.org.uk/precious-metal-prices (accessed September 2019).

  34. 34.

    Hu, J. et al. Confining noble metal (Pd, Au, Pt) nanoparticles in surfactant ionic liquids: active non-mercury catalysts for hydrochlorination of acetylene. ACS Catal. 5, 6724–6731 (2015).

    CAS  Google Scholar 

  35. 35.

    Mitchenko, S. A., Krasnyakova, T. V., Mitchenko, R. S. & Korduban, A. N. Acetylene catalytic hydrochlorination over powder catalyst prepared by pre-milling of K2PtCl4 salt. J. Mol. Catal. A Chem. 275, 101–108 (2007).

    CAS  Google Scholar 

  36. 36.

    Yang, L. et al. Metal nanoparticles in ionic liquid-cosolvent biphasic systems as active catalysts for acetylene hydrochlorination. AIChE J. 64, 2536–2544 (2018).

    CAS  Google Scholar 

  37. 37.

    Yang, M. et al. A common single-site Pt(II)-O(OH)x- species stabilized by sodium on “active” and “inert” supports catalyzes the water-gas shift reaction. J. Am. Chem. Soc. 137, 3470–3473 (2015).

    CAS  PubMed  Google Scholar 

  38. 38.

    Spieker, W. A., Liu, J., Miller, J. T. & Regalbuto, J. R. An EXAFS study of the co-ordination chemistry of hydrogen hexachloroplatinate(IV) 1. Speciation in aqueous solution. Appl. Catal. A 232, 219–235 (2002).

    CAS  Google Scholar 

  39. 39.

    Fraga, M. A. et al. Properties of carbon-supported platinum catalysts: role of carbon surface sites. J. Catal. 209, 355–364 (2002).

    CAS  Google Scholar 

  40. 40.

    Chen, Z. et al. Stabilization of single metal atoms on graphitic carbon nitride. Adv. Funct. Mater. 27, 1605785 (2017).

    Google Scholar 

  41. 41.

    Lei, Y. et al. Effect of particle size and adsorbates on the L3, L2 and L1 X-ray absorption near edge structure of supported Pt nanoparticles. Top. Catal. 54, 334–348 (2011).

    CAS  Google Scholar 

  42. 42.

    Lin, R., Kaiser, S. K., Hauert, R. & Pérez-Ramírez, J. Descriptors for high-performance nitrogen-doped carbon catalysts in acetylene hydrochlorination. ACS Catal. 8, 1114–1121 (2018).

    CAS  Google Scholar 

  43. 43.

    Bishop, P. T., Carthey, N. A. & Johnston, P. Catalyst comprising gold and a sulphur containing ligand on a support and method for its preparation. International patent WO 2013/008004A3 (2013).

  44. 44.

    Newville, M. IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Rad. 8, 322–324 (2001).

    CAS  Google Scholar 

  45. 45.

    Kresse, G. & Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  46. 46.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  47. 47.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  PubMed  Google Scholar 

  48. 48.

    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    CAS  PubMed  Google Scholar 

  49. 49.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    PubMed  Google Scholar 

  50. 50.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  51. 51.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  52. 52.

    Makov, G. & Payne, M. C. Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51, 4014–4022 (1995).

    CAS  Google Scholar 

  53. 53.

    Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    CAS  Google Scholar 

  54. 54.

    Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    CAS  PubMed  Google Scholar 

  55. 55.

    Álvarez-Moreno, M. et al. Managing the computational chemistry big data problem: the ioChem-BD platform. J. Chem. Inf. Model. 55, 95–103 (2015).

    PubMed  Google Scholar 

  56. 56.

    Fako, E. ioChem-BD Collection (Institute of Chemical Research of Catalonia, accessed 6 February 2020); ​https://doi.org/10.19061/iochem-bd-1-74.

Download references

Acknowledgements

This work was supported by an ETH research grant (ETH-40 17-1) and the Swiss National Science Foundation (project no. 200021–169679). E.F. thanks MINECO La Caixa Severo Ochoa for a predoctoral grant through Severo Ochoa Excellence Accreditation 2014–2018 (SEV 2013 0319). We thank BSC-RES for providing generous computational resources. We thank the Scientific Centre for Optical and Electron Microscopy (ScopeM) at ETH Zurich for the use of their facilities and the Micromeritics Grant Program for the award of the 3Flex instrument.

Author information

Affiliations

Authors

Contributions

J.P.-R. conceived and coordinated all stages of this research. S.K.K. prepared and characterized the catalysts, and performed and analysed the steady-state tests with support from G.M.; E.F. and N.L. conducted the DFT calculations. F.K. performed the microscopic analysis. R.H. conducted the XPS analysis. O.V.S. and A.H.C. conducted the XAS analysis. The data were discussed among all the authors. S.K.K., E.F., N.L. and J.P.-R. wrote the paper with feedback from the other authors.

Corresponding author

Correspondence to Javier Pérez-Ramírez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–8, Figs. 1–20, discussion, references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaiser, S.K., Fako, E., Manzocchi, G. et al. Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production. Nat Catal 3, 376–385 (2020). https://doi.org/10.1038/s41929-020-0431-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing