Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Organocatalytic nitrogen transfer to unactivated olefins via transient oxaziridines


Organocatalytic nitrogen transfer to C=C bonds provides straightforward access to aziridines under mild conditions with low financial and environmental impacts; however, previous methods were typically limited to conjugated C=C bonds (that is, activated olefins), whereas aziridination of isolated C=C bonds (that is, unactivated olefins) remains underexplored. Here we demonstrate a strategy for nitrogen transfer to unactivated olefins by utilizing electron-deficient ketones as catalysts. An oxaziridine intermediate, generated in situ from the ketone catalyst and a nitrogen source, transfers nitrogen to unactivated C=C bonds preferentially over activated C=C bonds. This ‘unusual’ chemoselectivity, as well as the enantioselectivity realized through the use of a chiral ketone catalyst, cannot be achieved by previously developed methods that are based on either organocatalysts or metal catalysts. Moreover, mechanistic studies through modified mass spectrometry allow capture and further investigation of the transient oxaziridine intermediate, establishing its essential role in this nitrogen transfer process.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Catalytic heteroatom transfer to C=C bonds.
Fig. 2: Organocatalytic nitrogen transfer to unactivated olefins.
Fig. 3: Additional substrates and comparisons between organocatalysts and rhodium catalysts.
Fig. 4: Mass spectrometric studies of the reaction mechanism.
Fig. 5: Computational studies of the reaction mechanism.

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information. Additional data are available from the corresponding authors on reasonable request.


  1. MacMillan, D. W. C. The advent and development of organocatalysis. Nature 455, 304–308 (2008).

    Article  CAS  Google Scholar 

  2. Kiesewetter, M. K., Shin, E. J., Hedrick, J. L. & Waymouth, R. M. Organocatalysis: opportunities and challenges for polymer synthesis. Macromolecules 43, 2093–2107 (2010).

    Article  CAS  Google Scholar 

  3. Alemán, J. & Cabrera, S. Applications of asymmetric organocatalysis in medicinal chemistry. Chem. Soc. Rev. 42, 774–793 (2013).

    Article  Google Scholar 

  4. Zhu, Y., Wang, Q., Cornwall, R. G. & Shi, Y. Organocatalytic asymmetric epoxidation and aziridination of olefins and their synthetic applications. Chem. Rev. 114, 8199–8256 (2014).

    Article  CAS  Google Scholar 

  5. Davis, R. L., Stiller, J., Naicker, T., Jiang, H. & Jørgensen, K. A. Asymmetric organocatalytic epoxidations: reactions, scope, mechanisms, and applications. Angew. Chem. Int. Ed. 53, 7406–7426 (2014).

    Article  CAS  Google Scholar 

  6. Shi, Y. Organocatalytic asymmetric epoxidation of olefins by chiral ketones. Acc. Chem. Res. 37, 488–496 (2004).

    Article  CAS  Google Scholar 

  7. Triandafillidi, I., Tzaras, D. I. & Kokotos, C. G. Green organocatalytic oxidative methods using activated ketones. ChemCatChem 10, 2521–2535 (2018).

    Article  CAS  Google Scholar 

  8. Roma, E., Tosi, E., Miceli, M. & Gasperi, T. Asymmetric organocatalytic aziridination: recent advances. Asian J. Org. Chem. 7, 2357–2367 (2018).

    Article  CAS  Google Scholar 

  9. Shen, Y.-M., Zhao, M.-X., Xu, J. & Shi, Y. An amine-promoted aziridination of chalcones. Angew. Chem. Int. Ed. 45, 8005–8008 (2006).

    Article  CAS  Google Scholar 

  10. Armstrong, A., Baxter, C. A., Lamont, S. G., Pape, A. R. & Wincewicz, R. Amine-promoted, organocatalytic aziridination of enones. Org. Lett. 9, 351–353 (2007).

    Article  CAS  Google Scholar 

  11. Vesely, J., Ibrahem, I., Zhao, G.-L., Rios, R. & Córdova, A. Organocatalytic enantioselective aziridination of α,β-unsaturated aldehydes. Angew. Chem. Int. Ed. 46, 778–781 (2007).

    Article  CAS  Google Scholar 

  12. Pesciaioli, F. et al. Organocatalytic asymmetric aziridination of enones. Angew. Chem. Int. Ed. 47, 8703–8706 (2008).

    Article  CAS  Google Scholar 

  13. De Fusco, C., Fuoco, T., Croce, G. & Lattanzi, A. Noncovalent organocatalytic synthesis of enantioenriched terminal aziridines with a quaternary stereogenic center. Org. Lett. 14, 4078–4081 (2012).

    Article  Google Scholar 

  14. Halskov, K. S., Naicker, T., Jensen, M. E. & Jørgensen, K. A. Organocatalytic asymmetric remote aziridination of 2,4-dienals. Chem. Commun. 49, 6382–6384 (2013).

    Article  CAS  Google Scholar 

  15. Frankowski, S. et al. Organocatalytic synthesis of cis-2,3-aziridine aldehydes by a postreaction isomerization. Org. Lett. 19, 5000–5003 (2017).

    Article  CAS  Google Scholar 

  16. Yoshimura, A., Middleton, K. R., Zhu, C., Nemykin, V. N. & Zhdankin, V. V. Hypoiodite-mediated metal-free catalytic aziridination of alkenes. Angew. Chem. Int. Ed. 51, 8059–8062 (2012).

    Article  CAS  Google Scholar 

  17. Jeong, J. U., Tao, B., Sagasser, I., Henniges, H. & Sharpless, K. B. Bromine-catalyzed aziridination of olefins. A rare example of atom-transfer redox catalysis by a main group element. J. Am. Chem. Soc. 120, 6844–6845 (1998).

    Article  CAS  Google Scholar 

  18. Jat, J. L. et al. Direct stereospecific synthesis of unprotected N-H and N-Me aziridines from olefins. Science 343, 61–65 (2014).

    Article  CAS  Google Scholar 

  19. Ma, Z., Zhou, Z. & Kürti, L. Direct and stereospecific synthesis of N-H and N-alkyl aziridines from unactivated olefins using hydroxylamine-O-sulfonic acids. Angew. Chem. Int. Ed. 56, 9886–9890 (2017).

    Article  CAS  Google Scholar 

  20. Sabir, S., Pandey, C. B., Yadav, A. K., Tiwari, B. & Jat, J. L. Direct N-H/N-Me aziridination of unactivated olefins using O-(sulfonyl)hydroxylamines as aminating agents. J. Org. Chem. 83, 12255–12260 (2018).

    Article  CAS  Google Scholar 

  21. Gao, H. et al. Rapid heteroatom transfer to arylmetals utilizing multifunctional reagent scaffolds. Nat. Chem. 9, 681–688 (2017).

    Article  CAS  Google Scholar 

  22. Zhou, Z., Ma, Z., Behnke, N. E., Gao, H. & Kürti, L. Non-deprotonative primary and secondary amination of (hetero)arylmetals. J. Am. Chem. Soc. 139, 115–118 (2017).

    Article  CAS  Google Scholar 

  23. Andreae, S. & Schmitz, E. Electrophilic aminations with oxaziridines. Synthesis 1991, 327–341 (1991).

    Article  Google Scholar 

  24. Williamson, K. S., Michaelis, D. J. & Yoon, T. P. Advances in the chemistry of oxaziridines. Chem. Rev. 114, 8016–8036 (2014).

    Article  CAS  Google Scholar 

  25. Washington, I., Houk, K. N. & Armstrong, A. Strategies for the design of organic aziridination reagents and catalysts: transition structures for alkene aziridinations by NH transfer. J. Org. Chem. 68, 6497–6501 (2003).

    Article  CAS  Google Scholar 

  26. Wallace, R. G. Hydroxylamine-O-sulfonic acid — a versatile synthetic reagent. Aldrichimica Acta 13, 3–11 (1980).

    CAS  Google Scholar 

  27. Colomer, I., Chamberlain, A. E. R., Haughey, M. B. & Donohoe, T. J. Hexafluoroisopropanol as a highly versatile solvent. Nat. Rev. Chem. 1, 0088 (2017).

    Article  CAS  Google Scholar 

  28. Gershenzon, J. & Dudareva, N. The function of terpene natural products in the natural world. Nat. Chem. Biol. 3, 408–414 (2007).

    Article  CAS  Google Scholar 

  29. Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).

    Article  CAS  Google Scholar 

  30. Iacobucci, C., Reale, S. & De Angelis, F. Elusive reaction intermediates in solution explored by ESI-MS: reverse periscope for mechanistic investigations. Angew. Chem. Int. Ed. 55, 2980–2993 (2016).

    Article  CAS  Google Scholar 

Download references


L.K. acknowledges financial support from Rice University, the National Institutes of Health (R01 grant no. GM-114609-04), the National Science Foundation (CAREER:SusChEM grant no. CHE-1546097) and the Robert A. Welch Foundation (grant no. C-1764). X.Z. is grateful for financial support from the Shenzhen STIC (grant no. JCYJ20170412150343516) and the Shenzhen San-Ming Project (grant no. SZSM201809085). D.H.E. thanks BYU and the Fulton Supercomputing Lab.

Author information

Authors and Affiliations



Q.-Q.C. and L.K. conceived this work and designed the synthetic studies; Q.-Q.C. conducted the synthetic studies with assistance from Z.Z.; X.Z. and D.H.E. designed the mechanistic studies; H.J. and D.H.E. conducted the mechanistic studies with assistance from Q.-Q.C. and J.H.S.; Q.-Q.C. and L.K. prepared the manuscript with input from all other authors.

Corresponding author

Correspondence to László Kürti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Suplementary information

Supplementary Information

Supplementary Notes 1–3, Tables 1–4, methods, Figs. 1–7 and references.

Supplementary Data 1

Cartesian coordinates and energies for calculated structures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, QQ., Zhou, Z., Jiang, H. et al. Organocatalytic nitrogen transfer to unactivated olefins via transient oxaziridines. Nat Catal 3, 386–392 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing