Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enhanced photocatalytic alkane production from fatty acid decarboxylation via inhibition of radical oligomerization


The decarboxylation of bio-derived fatty acids provides a sustainable pathway for the production of alkane products under mild conditions; however, products are generally obtained in low selectivity due to the uncontrollable reactivity of radical intermediates. Here we demonstrate that photogenerated radicals can be rapidly terminated by surface hydrogen species during photocatalytic decarboxylation of fatty acids on a hydrogen-rich surface that is constructed by the interactions between H2 and Pt/TiO2 catalyst, thereby greatly inhibiting oligomerization; Cn1 alkanes can therefore be obtained from bio-derived C12–C18 fatty acids in high yields (≥90%) under mild conditions (30 °C, H2 pressure ≤0.2 MPa) and 365 nm light-emitting dode irradiation. Industrial low-value fatty acid mixtures (namely, soybean and tall oil fatty acids) can be transformed into alkane products in high yields (up to 95%). Our research introduces an efficient biomass-upgrading approach that is enabled by subtle control of the radical intermediate conversion on a heterogeneous surface.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: A schematic representation of a photocatalytic decarboxylation strategy for the production of alkanes from bio-derived fatty acids.
Fig. 2: Photocatalytic decarboxylation of saturated fatty acids.
Fig. 3: The interaction between H2 and Pt/TiO2 and its influence on the production of Cn1 alkanes.
Fig. 4: Photocatalytic decarboxylation of unsaturated fatty acids and fatty acid mixtures over Pt/TiO2.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.


  1. 1.

    Anthonykutty, J. M. et al. Value added hydrocarbons from distilled tall oil via hydrotreating over a commercial NiMo catalyst. Ind. Eng. Chem. Res. 52, 10114–10125 (2013).

    CAS  Google Scholar 

  2. 2.

    Kunkes, E. L. et al. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science 322, 417–421 (2008).

    CAS  PubMed  Google Scholar 

  3. 3.

    Deneyer, A. et al. Direct upstream integration of biogasoline production into current light straight run naphtha petrorefinery processes. Nat. Energy 3, 969–977 (2018).

    CAS  Google Scholar 

  4. 4.

    Luo, N. et al. Visible-light-driven coproduction of diesel precursors and hydrogen from lignocellulose-derived methylfurans. Nat. Energy 4, 575–584 (2019).

    CAS  Google Scholar 

  5. 5.

    Zhao, C., Brück, T. & Lercher, J. A. Catalytic deoxygenation of microalgae oil to green hydrocarbons. Green. Chem. 15, 1720–1739 (2013).

    CAS  Google Scholar 

  6. 6.

    Lestari, S., Maki-Arvela, P., Beltramini, J., Lu, G. Q. & Murzin, D. Y. Transforming triglycerides and fatty acids into biofuels. ChemSusChem 2, 1109–1119 (2009).

    CAS  PubMed  Google Scholar 

  7. 7.

    Abdul Kapor, N. Z., Maniam, G. P., Rahim, M. H. A. & Yusoff, M. M. Palm fatty acid distillate as a potential source for biodiesel production-a review. J. Clean. Prod. 143, 1–9 (2017).

    CAS  Google Scholar 

  8. 8.

    Haas, M. J. Improving the economics of biodiesel production through the use of low value lipids as feedstocks: vegetable oil soapstock. Fuel Process. Technol. 86, 1087–1096 (2005).

    CAS  Google Scholar 

  9. 9.

    Mäki-Arvela, P. et al. Catalytic deoxygenation of tall oil fatty acid over palladium supported on mesoporous carbon. Energy Fuels 25, 2815–2825 (2011).

    Google Scholar 

  10. 10.

    Gosselink, R. W. et al. Reaction pathways for the deoxygenation of vegetable oils and related model compounds. ChemSusChem 6, 1576–1594 (2013).

    CAS  PubMed  Google Scholar 

  11. 11.

    Zhang, J. & Zhao, C. Development of a bimetallic Pd-Ni/HZSM-5 catalyst for the tandem limonene dehydrogenation and fatty acid deoxygenation to alkanes and arenes for use as biojet fuel. ACS Catal. 6, 4512–4525 (2016).

    CAS  Google Scholar 

  12. 12.

    Snåre, M., Kubičková, I., Mäki-Arvela, P., Eränen, K. & Murzin, D. Y. Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel. Ind. Eng. Chem. Res. 45, 5708–5715 (2006).

    Google Scholar 

  13. 13.

    Zhang, Z. et al. Catalytic decarbonylation of stearic acid to hydrocarbons over activated carbon-supported nickel. Sustain. Energy Fuels 2, 1837–1843 (2018).

    CAS  Google Scholar 

  14. 14.

    Peng, B., Yuan, X., Zhao, C. & Lercher, J. A. Stabilizing catalytic pathways via redundancy: selective reduction of microalgae oil to alkanes. J. Am. Chem. Soc. 134, 9400–9405 (2012).

    CAS  PubMed  Google Scholar 

  15. 15.

    Schwarz, J. & König, B. Decarboxylative reactions with and without light—a comparison. Green. Chem. 20, 323–361 (2018).

    CAS  Google Scholar 

  16. 16.

    Kraeutler, B. & Bard, A. J. Heterogeneous photocatalytic decomposition of saturated carboxylic acids on titanium dioxide powder. Decarboxylative route to alkanes. J. Am. Chem. Soc. 100, 5985–5992 (1978).

    CAS  Google Scholar 

  17. 17.

    Heciak, A., Morawski, A. W., Grzmil, B. & Mozia, S. Cu-modified TiO2 photocatalysts for decomposition of acetic acid with simultaneous formation of C1–C3 hydrocarbons and hydrogen. Appl. Catal. B 140-141, 108–114 (2013).

    CAS  Google Scholar 

  18. 18.

    Betts, L. M., Dappozze, F. & Guillard, C. Understanding the photocatalytic degradation by P25 TiO2 of acetic acid and propionic aicd in the pursuit of alkane production. Appl. Catal. A 554, 35–43 (2018).

    CAS  Google Scholar 

  19. 19.

    Ngo, S. et al. Kinetics and mechanism of the photocatalytic degradation of acetic acid in absence or presence of O2. J. Photochem. Photobiol. A 339, 80–88 (2017).

    CAS  Google Scholar 

  20. 20.

    Holzhäuser, F. J. et al. Electrochemical cross-coupling of biogenic di-acids for sustainable fuel production. Green. Chem. 21, 2334–2344 (2019).

    Google Scholar 

  21. 21.

    Manley, D. W. et al. Unconventional titania photocatalysis: direct deployment of carboxylic acids in alkylations and annulations. J. Am. Chem. Soc. 134, 13580–13583 (2012).

    CAS  PubMed  Google Scholar 

  22. 22.

    Manley, D. W. & Walton, J. C. A clean and selective radical homocoupling employing carboxylic acids with titania photoredox catalysis. Org. Lett. 16, 5394–5397 (2014).

    CAS  PubMed  Google Scholar 

  23. 23.

    dos Santos, T. R., Harnisch, F., Nilges, P. & Schroder, U. Electrochemistry for biofuel generation: transformation of fatty acids and triglycerides to diesel-like olefin/ether mixtures and olefins. ChemSusChem 8, 886–893 (2015).

    PubMed  Google Scholar 

  24. 24.

    Creusen, G., Holzhäuser, F. J., Artz, J., Palkovits, S. & Palkovits, R. Producing widespread monomers from biomass using economical carbon and ruthenium–titanium dioxide electrocatalysts. ACS Sustain. Chem. Eng. 6, 17108–17113 (2018).

    CAS  Google Scholar 

  25. 25.

    van der Klis, F., van den Hoorn, M. H., Blaauw, R., van Haveren, J. & van Es, D. S. Oxidative decarboxylation of unsaturated fatty acids. Eur. J. Lipid Sci. Technol. 113, 562–571 (2011).

    Google Scholar 

  26. 26.

    Cassani, C., Bergonzini, G. & Wallentin, C. J. Photocatalytic decarboxylative reduction of carboxylic acids and its application in asymmetric synthesis. Org. Lett. 16, 4228–4231 (2014).

    CAS  PubMed  Google Scholar 

  27. 27.

    Griffin, J. D., Zeller, M. A. & Nicewicz, D. A. Hydrodecarboxylation of carboxylic and malonic acid derivatives via organic photoredox catalysis: substrate scope and mechanistic insight. J. Am. Chem. Soc. 137, 11340–11348 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Hamid, S. et al. Photocatalytic conversion of acetate into molecular hydrogen and hydrocarbons over Pt/TiO2: pH dependent formation of kolbe and Hofer–Moest products. J. Catal. 349, 128–135 (2017).

    CAS  Google Scholar 

  29. 29.

    Al-Azri, Z. H. N. et al. The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: performance evaluation of M/TiO2 photocatalysts (M = Pd, Pt, Au) in different alcohol–water mixtures. J. Catal. 329, 355–367 (2015).

    CAS  Google Scholar 

  30. 30.

    Panagiotopoulou, P. & Kondarides, D. I. Effects of promotion of TiO2 with alkaline earth metals on the chemisorptive properties and water–gas shift activity of supported platinum catalysts. Appl. Catal. B 101, 738–746 (2011).

    CAS  Google Scholar 

  31. 31.

    Alexeev, O. S., Chin, S. Y., Engelhard, M. H., Ortiz-Soto, L. & Amiridis, M. D. Effects of reduction temperature and metal−support interactions on the catalytic activity of Pt/γ-Al2O3 and Pt/TiO2 for the oxidation of CO in the presence and absence of H2. J. Phys. Chem. B 109, 23430–23443 (2005).

    CAS  PubMed  Google Scholar 

  32. 32.

    Parsons, R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. 34, 1053–1063 (1958).

    Google Scholar 

  33. 33.

    Heller, A., Aharon-Shalom, E., Bonner, W. A. & Miller, B. Hydrogen-evolving semiconductor photocathods: nature of the junction and function of the platinum group metal catalyst. J. Am. Chem. Soc. 104, 6942–6948 (1982).

    CAS  Google Scholar 

  34. 34.

    Wen, B., Li, Y., Chen, C., Ma, W. & Zhao, J. An unexplored O2-involved pathway for the decarboxylation of saturated carboxylic acids by TiO2 photocatalysis: an isotopic probe study. Chem. Eur. J. 16, 11859–11866 (2010).

    CAS  PubMed  Google Scholar 

  35. 35.

    Panayotov, D. A. & Yates, J. T. Charge exchange between TiO2 and a polyfunctional chemisorbed molecule—the involvement of electrophilic groups. Chem. Phys. Lett. 399, 300–306 (2004).

    CAS  Google Scholar 

  36. 36.

    Panayotov, D. A. & Yates, J. T. Spectroscopic detection of hydrogen atom spillover from Au nanoparticles supported on TiO2: use of conduction band electrons. J. Phys. Chem. C 111, 2959–2964 (2007).

    CAS  Google Scholar 

  37. 37.

    Li, J. et al. Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Appl. Catal. B 206, 300–307 (2017).

    CAS  Google Scholar 

  38. 38.

    Hurum, D. C., Agrios, A. G., Gray, K. A., Rajh, T. & Thurnauer, M. C. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 107, 4545–4549 (2003).

    CAS  Google Scholar 

  39. 39.

    Prins, R. Hydrogen spillover. Facts and fiction. Chem. Rev. 112, 2714–2738 (2012).

    CAS  PubMed  Google Scholar 

  40. 40.

    Schrauben, J. N. et al. Titanium and zinc oxide nanoparticles are proton-coupled electron transfer agents. Science 336, 1298–1301 (2012).

    CAS  PubMed  Google Scholar 

  41. 41.

    Karim, W. et al. Catalyst support effects on hydrogen spillover. Nature 541, 68–71 (2017).

    CAS  PubMed  Google Scholar 

  42. 42.

    Porosoff, M. D. & Chen, J. G. Trends in the catalytic reduction of CO2 by hydrogen over supported monometallic and bimetallic catalysts. J. Catal. 301, 30–37 (2013).

    CAS  Google Scholar 

  43. 43.

    Chen, H.-Y. T., Tosoni, S. & Pacchioni, G. Hydrogen adsorption, dissociation, and spillover on Ru10 clusters supported on anatase TiO2 and tetragonal ZrO2 (101) surfaces. ACS Catal. 5, 5486–5495 (2015).

    CAS  Google Scholar 

  44. 44.

    Wang, X., Wu, G., Guan, N. & Li, L. Supported Pd catalysts for solvent-free benzyl alcohol selective oxidation: effects of calcination pretreatments and reconstruction of Pd sites. Appl. Catal. B 115-116, 7–15 (2012).

    CAS  Google Scholar 

  45. 45.

    Panagiotopoulou, P. & Kondarides, D. I. Effects of alkali promotion of TiO2 on the chemisorptive properties and water–gas shift activity of supported noble metal catalysts. J. Catal. 267, 57–66 (2009).

    CAS  Google Scholar 

  46. 46.

    Weng, Z., Ni, X., Yang, D., Wang, J. & Chen, W. Novel photopolymerizations initiated by alkyl radicals generated from photocatalyzed decarboxylation of carboxylic acids over oxide semiconductor nanoparticles: extended photo-Kolbe reactions. J. Photochem. Photobiol., A 201, 151–156 (2009).

    CAS  Google Scholar 

  47. 47.

    Liang, H. et al. Porous TiO2/Pt/TiO2 sandwich catalyst for highly selective semihydrogenation of alkyne to olefin. ACS Catal. 7, 6567–6572 (2017).

    CAS  Google Scholar 

  48. 48.

    Pattanaik, B. P. & Misra, R. D. Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: a review. Renew. Sustain. Energy Rev. 73, 545–557 (2017).

    CAS  Google Scholar 

  49. 49.

    Hill, J., Nelson, E., Tilman, D., Polasky, S. & Tiffany, D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl Acad. Sci. USA 103, 11206–11210 (2006).

    CAS  PubMed  Google Scholar 

  50. 50.

    Wang, Y. et al. Heterogeneous ceria catalyst with water-tolerant Lewis acidic sites for one-pot synthesis of 1,3-diols via prins condensation and hydrolysis reactions. J. Am. Chem. Soc. 135, 1506–1515 (2013).

    CAS  PubMed  Google Scholar 

  51. 51.

    Li, R., Han, H., Zhang, F., Wang, D. & Li, C. Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO4. Energy Environ. Sci. 7, 1369–1376 (2014).

    CAS  Google Scholar 

  52. 52.

    Zhang, Y., Zhang, N., Tang, Z.-R. & Xu, Y.-J. Identification of Bi2WO6 as a highly selective visible-light photocatalyst toward oxidation of glycerol to dihydroxyacetone in water. Chem. Sci. 4, 1820–1824 (2013).

    CAS  Google Scholar 

  53. 53.

    Henderson, M., White, J. M., Uetsuka, H. & Onishi, H. Selectivity changes during organic photooxidation on TiO2: role of O2 pressure and organic coverage. J. Catal. 238, 153–164 (2006).

    CAS  Google Scholar 

  54. 54.

    Jeništová, K. et al. Hydrodeoxygenation of stearic acid and tall oil fatty acids over Ni-alumina catalysts: influence of reaction parameters and kinetic modelling. Chem. Eng. J. 316, 401–409 (2017).

    Google Scholar 

Download references


This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB17000000) and the National Natural Science Foundation of China (grant nos. 21721004, 21690082, 21690084, 21690080, 21711530020).

Author information




Z.H. designed and conducted most of the experiments, and wrote the manuscript. Z.Z. carried out the life-cycle assessment and wrote the manuscript. C.Z. contributed to experiment design and manuscript revisions. J.L. performed the DFT study. H.L., N.L. and J.Z. contributed to product analysis, photoreactor design and mechanism investigation. General guidance, project directing and manuscript revisions were done by F.W.

Corresponding author

Correspondence to Feng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Discussion, Figs. 1–27, Tables 1–9 and references.

Supplementary Data

Atomic coordinates of the optimized computational models.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Zhao, Z., Zhang, C. et al. Enhanced photocatalytic alkane production from fatty acid decarboxylation via inhibition of radical oligomerization. Nat Catal 3, 170–178 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing