Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanistic study of an immobilized molecular electrocatalyst by in situ gap-plasmon-assisted spectro-electrochemistry

Abstract

Immobilized first-row transition metal complexes are potential low-cost electrocatalysts for selective CO2 conversion in the production of renewable fuels. Mechanistic understanding of their function is vital for the development of next-generation catalysts, although the poor surface sensitivity of many techniques makes this challenging. Here, a nickel bis(terpyridine) complex is introduced as a CO2 reduction electrocatalyst in a unique electrode geometry, sandwiched by thiol-anchoring moieties between two gold surfaces. Gap-plasmon-assisted surface-enhanced Raman scattering spectroscopy coupled with density functional theory calculations reveals that the nature of the anchoring group plays a pivotal role in the catalytic mechanism. Our in situ spectro-electrochemical measurement enables the detection of as few as eight molecules undergoing redox transformations in individual plasmonic hotspots, together with the calibration of electrical fields via vibrational Stark effects. This advance allows rapid exploration of non-resonant redox reactions at the few-molecule level and provides scope for future mechanistic studies of single molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electric field calibration in NPoM.
Fig. 2: Dark-field scattering spectroscopy and electrochemistry for Ni(tpyS)2.
Fig. 3: SERS and DFT calculations for Ni(tpyS)2.
Fig. 4: Ni(tpyS)2-catalysed CO2 reduction.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the University of Cambridge data repository at https://doi.org/10.17863/CAM.60379.

Code availability

The code for spectral matching using the earth mover algorithm is available from the University of Cambridge data repository at https://doi.org/10.17863/CAM.60379.

References

  1. Baumberg, J. J., Aizpurua, J., Mikkelsen, M. H. & Smith, D. R. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18, 668–678 (2019).

    Article  PubMed  CAS  Google Scholar 

  2. Pfisterer, J. H. K. & Domke, K. F. Unfolding the versatile potential of EC-TERS for electrocatalysis. Curr. Opin. Electrochem. 8, 96–102 (2018).

    Article  CAS  Google Scholar 

  3. Kang, G., Yang, M., Mattei, M. S., Schatz, G. C. & Van Duyne, R. P. In situ nanoscale redox mapping using tip-enhanced Raman spectroscopy. Nano Lett. 19, 2106–2113 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Schmid, T., Opilik, L., Blum, C. & Zenobi, R. Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review. Angew. Chem. Int. Ed. 52, 5940–5954 (2013).

    Article  CAS  Google Scholar 

  5. Kumar, N. et al. Extending the plasmonic lifetime of tip-enhanced Raman spectroscopy probes. Phys. Chem. Chem. Phys. 18, 13710–13716 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Wu, D.-Y., Li, J.-F., Ren, B. & Tian, Z.-Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 37, 1025–1041 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Zong, C., Chen, C. J., Zhang, M., Wu, D. Y. & Ren, B. Transient electrochemical surface-enhanced Raman spectroscopy: a millisecond time-resolved study of an electrochemical redox process. J. Am. Chem. Soc. 137, 11768–11774 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Wain, A. J. & O’Connell, M. A. Advances in surface-enhanced vibrational spectroscopy at electrochemical interfaces. Adv. Phys. X 2, 188–209 (2017).

    CAS  Google Scholar 

  9. Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Benz, F. et al. SERS of individual nanoparticles on a mirror: size does matter, but so does shape. J. Phys. Chem. Lett. 7, 2264–2269 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chazalviel, J.-N. & Allongue, P. On the origin of the efficient nanoparticle mediated electron transfer across a self-assembled monolayer. J. Am. Chem. Soc. 133, 762–764 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Zhao, J., Bradbury, C. R. & Fermín, D. J. Long-range electronic communication between metal nanoparticles and electrode surfaces separated by polyelectrolyte multilayer films. J. Phys. Chem. C 112, 6832–6841 (2008).

    Article  CAS  Google Scholar 

  13. Shein, J. B., Lai, L. M. H., Eggers, P. K., Paddon-Row, M. N. & Gooding, J. J. Formation of efficient electron transfer pathways by adsorbing gold nanoparticles to self-assembled monolayer modified electrodes. Langmuir 25, 11121–11128 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, L., Polyansky, D. E. & Concepcion, J. J. Self-assembled bilayers as an anchoring strategy: catalysts, chromophores, and chromophore-catalyst assemblies. J. Am. Chem. Soc. 141, 8020–8024 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Dalle, K. E. et al. Electro- and solar-driven fuel synthesis with first row transition metal complexes. Chem. Rev. 119, 2752–2875 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Materna, K. L., Crabtree, R. H. & Brudvig, G. W. Anchoring groups for photocatalytic water oxidation on metal oxide surfaces. Chem. Soc. Rev. 46, 6099–6110 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Clark, M. L. et al. CO2 reduction catalysts on gold electrode surfaces influenced by large electric fields. J. Am. Chem. Soc. 140, 17643–17655 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Cunillera, A. et al. Highly efficient Rh-catalysts immobilised by π-π stacking for the asymmetric hydroformylation of norbornene under continuous flow conditions. ChemCatChem 11, 2195–2205 (2019).

    Article  CAS  Google Scholar 

  19. Kuehnel, M. F., Orchard, K. L., Dalle, K. E. & Reisner, E. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J. Am. Chem. Soc. 139, 7217–7223 (2017).

  20. Elgrishi, N., Chambers, M. B., Artero, V. & Fontecave, M. Terpyridine complexes of first row transition metals and electrochemical reduction of CO2 to CO. Phys. Chem. Chem. Phys. 16, 13635–13644 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Leung, J. J. et al. Solar-driven reduction of aqueous CO2 with a cobalt bis(terpyridine)-based photocathode. Nat. Catal. 2, 354–365 (2019).

    Article  CAS  Google Scholar 

  22. Bae, J. H., Han, J.-H. & Chung, T. D. Electrochemistry at nanoporous interfaces: new opportunity for electrocatalysis. Phys. Chem. Chem. Phys. 14, 448–463 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Ai, L., Tian, T. & Jiang, J. Ultrathin graphene layers encapsulating nickel nanoparticles derived metal–organic frameworks for highly efficient electrocatalytic hydrogen and oxygen evolution reactions. ACS Sustain. Chem. Eng. 5, 4771–4777 (2017).

    Article  CAS  Google Scholar 

  24. Yang, Y., Liu, Z. & Lian, T. Bulk transport and interfacial transfer dynamics of photogenerated carriers in CdSe quantum dot solid electrodes. Nano Lett. 13, 3678–3683 (2013).

  25. Di Martino, G. et al. Tracking nanoelectrochemistry using individual plasmonic nanocavities. Nano Lett. 17, 4840–4845 (2017).

    Article  PubMed  CAS  Google Scholar 

  26. Jiang, S. et al. Investigation of cobalt phthalocyanine at the solid/liquid interface by electrochemical tip-enhanced Raman spectroscopy. J. Phys. Chem. C 123, 9852–9859 (2019).

    Article  CAS  Google Scholar 

  27. Olalla, P. Optical transport and sensing in plexcitonic nanocavities. Opt. Express 21, 2649–2654 (2013).

    Google Scholar 

  28. Benz, F. et al. Generalized circuit model for coupled plasmonic systems. Opt. Express 23, 33255–33269 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. De Nijs, B. et al. Unfolding the contents of sub-nm plasmonic gaps using normalising plasmon resonance spectroscopy. Faraday Discuss. 178, 185–193 (2015).

    Article  PubMed  CAS  Google Scholar 

  30. Gold nanoparticles. BBI Solutions https://bbisolutions.com/en/products/gold-reagents/gold-nanoparticles.html (2020).

  31. Ge, A. et al. Interfacial structure and electric field probed by in situ electrochemical vibrational Stark effect spectroscopy and computational modeling. J. Phys. Chem. C 121, 18674–18682 (2017).

    Article  CAS  Google Scholar 

  32. Boxer, S. G. Stark realities. J. Phys. Chem. B 113, 2972–2983 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Nelson, D. A. & Schultz, Z. D. Influence of optically rectified electric fields on the plasmonic photocatalysis of 4-nitrothiophenol and 4-aminothiophenol to 4,4-dimercaptoazobenzene. J. Phys. Chem. C 122, 8581–8588 (2018).

    Article  CAS  Google Scholar 

  34. Compton, R. G. & Banks, C. E. Understanding Voltammetry (Imperial College Press, 2010).

  35. Akkerman, H. B. et al. Electron tunneling through alkanedithiol self-assembled monolayers in large-area molecular junctions. Proc. Natl Acad. Sci. USA 104, 11161–11166 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Poon, J. et al. Altered electrochemistry at graphene- or alumina-modified electrodes: catalysis vs electrocatalysis in multistep electrode processes. J. Phys. Chem. C 119, 13777–13784 (2015).

    Article  CAS  Google Scholar 

  37. Hu, Y. et al. Tracking mechanistic pathway of photocatalytic CO2 reaction at Ni sites using operando time-resolved spectroscopy. J. Am. Chem. Soc. 142, 5618–5626 (2020).

  38. Farkas, E., Enyedy, É. A., Micera, G. & Garribba, E. Coordination modes of hydroxamic acids in copper(II), nickel(II) and zinc(II) mixed-ligand complexes in aqueous solution. Polyhedron 19, 1727–1736 (2000).

    Article  CAS  Google Scholar 

  39. Readman, C. et al. Anomalously large spectral shifts near the quantum tunnelling limit in plasmonic rulers with subatomic resolution. Nano Lett. 19, 2051–2058 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Liu, Y. C., Hwang, B. J. & Jian, W. J. Effect of preparation conditions for roughening gold substrate by oxidation-reduction cycle on the surface-enhanced Raman spectroscopy of polypyrrole. Mater. Chem. Phys. 73, 129–134 (2002).

    Article  CAS  Google Scholar 

  41. Carnegie, C. et al. Room-temperature optical picocavities below 1 nm3 accessing single-atom geometries. J. Phys. Chem. Lett. 9, 7146–7151 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Anderer, C., Näther, C. & Bensch, W. Bis(2,2’:6’,2”-terpyridine-K3 N,N’,N”)nickel(II) bis(perchlorate) hemihydrate. IUCrData 1, x161009 (2016); https://iucrdata.iucr.org/x/issues/2016/07/00/su4053/su4053.pdf

  43. Becke, A. D. Density−functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  44. Frisch, M. J. et al. Gaussian 09, Revision E (Gaussian, 2009).

  45. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Foster, J. P. & Weinhold, F. Natural hybrid orbitals. J. Am. Chem. Soc. 102, 7211–7218 (1980).

    Article  CAS  Google Scholar 

  47. Reed, A. E., Curtiss, L. A. & Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88, 899–926 (1988).

    Article  CAS  Google Scholar 

  48. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Tissandier, M. D. et al. The proton’s absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data. J. Phys. Chem. A 102, 7787–7794 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Di Martino for support with spectro-electrochemical cell design, B. de Nijs for support with Raman facilities and D.-B. Grys for support with understanding of polarized and unpolarized DFT. We acknowledge funding from the EPSRC (nos. EP/L027151/1 and EP/R013012/1) and Cambridge NanoDTC (no. EP/L015978/1 to D.W. and C.R.), and the ERC (no. 757850 BioNet to D.B. and T.F.). We are grateful to the UK Materials and Molecular Modelling Hub for computational resources, which is partially funded by EPSRC (no. EP/P020194/1). We acknowledge use of the research computing facility (Rosalind) at King’s College London (https://rosalind.kcl.ac.uk).

Author information

Authors and Affiliations

Authors

Contributions

D.W., Q.L., E. Reisner and J.J.B. conceived the research and developed the experiments. D.B., T.F. and E. Rosta carried out DFT calculations and provided input on catalytic interpretation. A.W. and E. Reisner provided input on interpretation of electrochemical and catalytic results. J.G. helped with spectral analysis. C.R. helped with synthesis of Ni(tpyS)2. D.W., Q.L., D.B., T.F. and J.J.B. analysed the data and wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Edina Rosta, Erwin Reisner or Jeremy J. Baumberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Irina Chernyshova and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Tables 1–5 and Notes 1–7.

Supplementary Data

Atomic coordinates of the optimized molecules.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wright, D., Lin, Q., Berta, D. et al. Mechanistic study of an immobilized molecular electrocatalyst by in situ gap-plasmon-assisted spectro-electrochemistry. Nat Catal 4, 157–163 (2021). https://doi.org/10.1038/s41929-020-00566-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-00566-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing