Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

RETRACTED ARTICLE: The amine-catalysed Suzuki–Miyaura-type coupling of aryl halides and arylboronic acids

This article was retracted on 08 December 2021

Matters Arising to this article was published on 02 December 2021

Matters Arising to this article was published on 02 December 2021

Matters Arising to this article was published on 02 December 2021

This article has been updated

Abstract

Suzuki–Miyaura coupling is a practical and attractive carbon−carbon bond formation reaction due to its high efficiency and wide functional group compatibility, but its industrial applications are limited because it is typically catalysed by expensive palladium-containing transition-metal complexes. Here we show a robust and chemoselective organocatalytic Suzuki−Miyaura-type coupling of aryl halides with arylboronic acids catalysed by amines. The utility and scope of this reaction were demonstrated by the synthesis of several commercially relevant small molecules and a selection of derivatives of pharmaceutical drugs.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Important drugs with biphenyl substituents and synthetic strategies.
Fig. 2: Optimization of the amine catalysts.
Fig. 3: Reaction scope with different aryl boronics/aryl halides.
Fig. 4: Synthesis and late-stage modification of bioactive molecules.
Fig. 5: Synthetic applications.
Fig. 6: Mechanistic probes.

Data availability

Characterization of the products, experimental procedures, inductively coupled plasma mass spectrometry, electron paramagnetic resonance and details for DFT calculations are available in the Supplementary Information. The other data that support the findings of this study are available from the corresponding author on reasonable request.

Change history

  • 08 March 2021

    Editor’s Note: The readers are alerted that the conclusions of this paper are subject to criticisms that are being considered by the editors. A further editorial response will follow the resolution of these issues.

  • 08 December 2021

    This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1038/s41929-021-00726-7

References

  1. Schneider, N., Lowe, D. M., Sayle, R. A., Tarselli, M. A. & Landrum, G. A. Big data from pharmaceutical patents: a computational analysis of medicinal chemists’ bread and butter. J. Med. Chem. 59, 4385–4402 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Miyaura, N. & Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 95, 2457–2483 (1995).

    Article  CAS  Google Scholar 

  3. Wu, X.-F., Anbarasan, P., Neumann, H. & Beller, M. From noble metal to Nobel Prize: palladium-catalyzed coupling reactions as key methods in organic synthesis. Angew. Chem. Int. Ed. 49, 9047–9050 (2010).

    Article  CAS  Google Scholar 

  4. Suzuki, A. Cross-coupling reactions of organoboranes: an easy way to construct C–C bonds (Nobel Lecture). Angew. Chem. Int. Ed. 50, 6722–6737 (2011).

    Article  CAS  Google Scholar 

  5. Miyaura, N., Yanagi, T. & Suzuki, A. The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases. Synth. Commun. 11, 513–519 (1981).

    Article  CAS  Google Scholar 

  6. Miyaura, N. Cross-coupling Reaction (Springer, 2002).

  7. Humphrey, J. M. & Chamberlin, A. R. Chemical synthesis of natural product peptides: coupling methods for the incorporation of noncoded amino acids into peptides. Chem. Rev. 97, 2243–2266 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Han, F.-S. Transition-metal-catalyzed Suzuki–Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts. Chem. Soc. Rev. 42, 5270–5298 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Mastalir, M., Stoger, B., Pittenauer, E., Allmaier, G. & Kirchner, K. Air-stable triazine-based Ni(ii) PNP pincer complexes as catalysts for the Suzuki–Miyaura cross-coupling. Org. Lett. 18, 3186–3189 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Shi, S., Meng, G. & Szostak, M. Synthesis of biaryls through nickel-catalyzed Suzuki–Miyaura coupling of amides by carbon–nitrogen bond cleavage. Angew. Chem. Int. Ed. 55, 6959–6963 (2016).

    Article  CAS  Google Scholar 

  11. Malapit, C. A., Bour, J. R., Brigham, C. E. & Sanford, M. S. Base-free nickel-catalysed decarbonylative Suzuki–Miyaura coupling of acid fluorides. Nature 563, 100–104 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tellis, J. C., Primer, D. N. & Molander, G. A. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 345, 433–436 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou, Y., You, W., Smith, K. B. & Brown, M. K. Copper-catalyzed cross coupling of boronic esters with aryl iodides and application to the carboboration of alkynes and allenes. Angew. Chem. Int. Ed. 53, 3475–3479 (2014).

    Article  CAS  Google Scholar 

  14. Asghar, S., Tailor, S. B., Elorriaga, D. & Bedford, R. B. Cobalt-catalyzed Suzuki biaryl coupling of aryl halides. Angew. Chem. Int. Ed. 56, 16367–16370 (2017).

    Article  CAS  Google Scholar 

  15. Brien, H. M. O. et al. Iron-catalysed substrate-directed Suzuki biaryl cross-coupling. Nat. Catal. 1, 429–437 (2018).

    Article  Google Scholar 

  16. Handa, S., Wang, Y., Gallou, F. & Lipshutz, B. H. Sustainable Fe–ppm Pd nanoparticle catalysis of Suzuki–Miyaura cross-couplings in water. Science 349, 1087–1091 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Felpin, F.-X., Ayad, T. & Mitra, S. Pd/C: an old catalyst for new applications—its use for the Suzuki–Miyaura reaction. Eur. J. Org. Chem. 2006, 2679–2690 (2006).

    Article  Google Scholar 

  18. Gans, J., Wolinsky, M. & Dunbar, J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309, 1387–1390 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Wei, J. et al. Concentration and pollution assessment of heavy metals within surface sediments of the Raohe Basin, China. Sci. Rep. 9, 13100 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, C. et al. Oxidative coupling between two hydrocarbons: an update of recent C–H functionalizations. Chem. Rev. 115, 12138–12204 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Lewis, J. C., Coelho, P. S. & Arnold, F. H. Enzymatic functionalization of carbon hydrogen bonds. Chem. Soc. Rev. 40, 2003–2021 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Qin, Y., Zhu, L. & Luo, S. Organocatalysis in inert C–H bond functionalization. Chem. Rev. 117, 9433–9520 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Hegedus, L. S. Organocatalysis in organic synthesis. J. Am. Chem. Soc. 131, 17995–17997 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Volla, C. M. R., Atodiresei, I. & Rueping, M. Catalytic C–C bond-forming multi-component cascade or domino reactions: pushing the boundaries of complexity in asymmetric organocatalysis. Chem. Rev. 114, 2390–2431 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. He, Z., Song, F., Sun, H. & Huang, Y. Transition-metal-free Suzuki-type cross-coupling reaction of benzyl halides and boronic acids via 1,2-metalate shift. J. Am. Chem. Soc. 140, 2693–2699 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Marzo, L., Pagire, S. K., Reiser, O. & König, B. Visible-light photocatalysis: does it make a difference in organic synthesis. Angew. Chem. Int. Ed. 57, 10034–10072 (2018).

    Article  CAS  Google Scholar 

  29. Romero, N. A., Margrey, K. A., Tay, N. E. & Nicewicz, D. A. Site-selective arene C–H amination via photoredox catalysis. Science 349, 1326–1330 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, W. et al. Direct arene C–H fluorination with 18F via organic photoredox catalysis. Science 364, 1170–1174 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yanagisawa, S., Ueda, K., Taniguchi, T. & Itami, K. Potassium t-butoxide alone can promote the biaryl coupling of electron-deficient nitrogen heterocycles and haloarenes. Org. Lett. 10, 4673–4676 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Sun, C.-L. et al. An efficient organocatalytic method for constructing biaryls through aromatic C–H activation. Nat. Chem. 2, 1044–1049 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, W. et al. Organocatalysis in cross-coupling: DMEDA-catalyzed direct C–H arylation of unactivated benzene. J. Am. Chem. Soc. 132, 16737–16740 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Sun, C.-L. & Shi, Z.-J. Transition-metal-free coupling reactions. Chem. Rev. 114, 9219–9280 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Jiang, J., Zhang, W.-M., Dai, J.-J., Xu, J. & Xu, H.-J. Visible-light-promoted C–H arylation by merging palladium catalysis with organic photoredox catalysis. J. Org. Chem. 82, 3622–3630 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Ishikawa, M. & Fukuzumi, S. 10-Methylacridine derivatives acting as efficient and stable photocatalysts in reductive dehalogenation of halogenated compounds with sodium borohydride via photoinduced electron transfer. J. Am. Chem. Soc. 112, 8864–8870 (1990).

    Article  CAS  Google Scholar 

  37. Nomura, M. et al. Design, synthesis, and evaluation of substituted phenylpropanoic acid derivatives as human peroxisome proliferator activated receptor activators. Discovery of potent and human peroxisome proliferator activated receptor α subtype-selective activators. J. Med. Chem. 46, 3581–3599 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Magano, J. & Dunetz, J. R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chem. Rev. 111, 2177–2250 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Ashcroft, C. P., Challenger, S., Derrick, A. M., Storey, R. & Thomson, N. M. Asymmetric synthesis of an MMP-3 inhibitor incorporating a 2-alkyl succinate motif. Org. Process Res. Dev. 7, 362–368 (2003).

    Article  CAS  Google Scholar 

  40. Eicken, K. et al. Anilide derivatives and their use to combat Botrytis. European patent 0545099 (1993).

  41. Eicken, K. et al. Bisphenylamides. German patent 19531813 (1997).

  42. Torborg, C. & Beller, M. Recent applications of palladium-catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries. Adv. Synth. Catal. 351, 3027–3043 (2009).

    Article  CAS  Google Scholar 

  43. Charpentier, B. et al. Synthesis, structure-affinity relationships, and biological activities of ligands binding to retinoic acid receptor subtypes. J. Med. Chem. 38, 4993–5006 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Shroot, B., Eustache, J. & Bernardon, J. M. Benzonaphthalenic derivatives and their use in pharmacy and cosmetics. US patent 4717720 (1988).

  45. Link, J. O. et al. Discovery of ledipasvir (GS-5885): a potent, once-daily oral NS5A inhibitor for the treatment of hepatitis C virus infection. J. Med. Chem. 57, 2033–2046 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Arvela, R. K. et al. A reassessment of the transition-metal free Suzuki-type coupling methodology. J. Org. Chem. 70, 161–168 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Kumar, A. et al. C–C bond formation of benzyl alcohols and alkynes using catalytic amount of KOtBu: unusual regioselectivity via a radical mechanism. Angew. Chem. Int. Ed. 58, 3373–3377 (2019).

    Article  CAS  Google Scholar 

  48. Wilson, A. S. S., Hill, M. S., Mahon, M. F., Dinoi, C. & Maron, L. Organocalcium-mediated nucleophilic alkylation of benzene. Science 358, 1168–1171 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Frisch, M. J. et al. Gaussian 09, Revision D.01 (Gaussian, 2013).

  50. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  51. Lee, C., Yang, W. & Parr, R. G. Development of the Colic–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  52. Fukui, K. A formulation of the reaction coordinate. J. Phys. Chem. 74, 4161–4163 (1970).

    Article  CAS  Google Scholar 

  53. Fukui, K. The path of chemical reactions—the IRC approach. Acc. Chem. Res. 14, 363–368 (1981).

    Article  CAS  Google Scholar 

  54. Qu, S. et al. Catalytic mechanisms of direct pyrrole synthesis via dehydrogenative coupling mediated by PNP–Ir or PNN–Ru pincer complexes: crucial role of proton-transfer shuttles in the PNP–Ir system. J. Am. Chem. Soc. 136, 4974–4991 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Yu, J.-L., Zhang, S.-Q. & Hong, X. Mechanisms and origins of chemo- and regioselectivities of Ru(ii)-catalyzed decarboxylative C–H alkenylation of aryl carboxylic acids with alkynes: a computational study. J. Am. Chem. Soc. 139, 7224–7243 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (21472033, 21571047, 21672001, 21702041, 21971051, 21871074 and 51961135104), the Key Research and Development Program of Anhui Province (201904a07020069) and the Fundamental Research Funds for the Central Universities (PA2020GDKC0021, JZ2020HGTB0062). This article is dedicated to the memory of H.-J.X.’s mentor Professor You-Cheng Liu.

Author information

Authors and Affiliations

Authors

Contributions

L.X., H.-Z.Y. and H.-J.X. devised the project. L.X., H.-Z.Y. and H.-J.X. designed and discussed the experiments. L.X., F.-Y.L., W.-J.C. and Z.-L.L. performed the experiments, compound characterization and data analysis. Q.Z., Y.L. and H.-Z.Y. performed the computational studies and the mechanistic studies. L.X., J.X., J.-J.D. and H.-J.X. prepared the manuscript.

Corresponding authors

Correspondence to Hai-Zhu Yu or Hua-Jian Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Z. Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1038/s41929-021-00726-7

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–11, Tables 1–7 and references.

Supplementary Data

Cartesian coordinates of Cat, K2CO3, Ph–B(OH)2, Int1, Int2, Int3, TS 3–4, Int4, Int5, TS 4–pro, TS 5–pro, Prod, [KHCO3K2CO3BO(OH)], Int6, Int7, Int8, Int2a, Int2b, Int2c, Int2d, Int1a, Int1b, Int7a and Int9.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Liu, FY., Zhang, Q. et al. RETRACTED ARTICLE: The amine-catalysed Suzuki–Miyaura-type coupling of aryl halides and arylboronic acids. Nat Catal 4, 71–78 (2021). https://doi.org/10.1038/s41929-020-00564-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-00564-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing