Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deciphering the dichotomy exerted by Zn(ii) in the catalytic sp2 C–O bond functionalization of aryl esters at the molecular level

Abstract

Ni-catalysed functionalization of strong sigma C–O bonds has become an innovative alternative for forging C–C bonds from simple and readily available phenol-derived precursors. However, these methodologies are poorly understood in mechanistic terms. Here we provide mechanistic knowledge about how Ni catalysts enable sp2sp2 bond formation between aryl esters and arylzinc species by providing reliable access to on-cycle mononuclear oxidative addition species of aryl esters to Ni(0) complexes bearing monodentate phosphines with either κ1- or κ2-O binding modes. While studying the reactivity and decomposition pathways of these complexes, we have unravelled an intriguing dichotomy exerted by Zn(ii) salts that results in parasitic ligand scavenging, oxidation events and NiZn clusters. We provide evidence that coordinating solvents and ligands disrupt these processes, thus offering knowledge for designing more-efficient Ni-catalysed reactions and a useful entry point to unravel the mechanistic intricacies of related processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic functionalization of aryl sp2 C–O bonds.
Fig. 2: Synthesis of mononuclear and dinuclear oxidative addition species of aryl esters to Ni(0) supported by monodentate ligands.
Fig. 3: Synthesis of Ni(i) carboxylate complexes.
Fig. 4: Uncovering the molecular interaction of Ni(0) and Zn(ii).
Fig. 5: Elucidating the effect of ZnCl2 on well-defined Ni(i) and Ni(ii) complexes.
Fig. 6: Transmetalation reactions with organozinc species.
Fig. 7: Understanding the intricacies of Ni-catalysed arylation of aryl esters mediated by Zn.

Data availability

Experimental procedures and characterization data for the catalysts and the synthesized compounds are included in the Supplementary Information. Crystallographic data are available from the Cambridge Crystallographic Data Centre with the following codes: 5a (CCDC 2017448), 5b (CCDC 2017449), 5c (CCDC 2017447), 6a (CCDC 2017442), 8 (CCDC 2017444), 10 (CCDC 2017446), 11 (CCDC 2017445), 12 (CCDC 2017450), 13 (CCDC 2017441), 14 (CCDC 2017443) and 17 (CCDC 2017440). Other data are available from the corresponding author upon request.

References

  1. Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hazari, N., Melvin, P. R. & Beromi, M. M. Well-defined nickel and palladium precatalysts for cross-coupling. Nat. Rev. Chem. 1, 17–25 (2017).

    Article  Google Scholar 

  3. Diccianni, J. B. & Diao, T. Mechanisms of nickel-catalyzed cross-coupling reactions. Trends Chem. 1, 830–844 (2019).

    Article  CAS  Google Scholar 

  4. de Meijere, A. & Diederich, F. Metal-Catalyzed Cross-Coupling Reactions (Wiley, 2008).

  5. Rosen, B. M. et al. Nickel-catalyzed cross-couplings involving carbon–oxygen bonds. Chem. Rev. 111, 1346–1416 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Desnoyer, A. N. & Love, J. A. Recent advances in well-defined, late transition metal complexes that make and/or break C–N, C–O and C–S Bonds. Chem. Soc. Rev. 46, 197–238 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Zarate, C., van Gemmeren, M., Somerville, R. J. & Martin, R. Phenol derivatives: modern electrophiles in cross-coupling reactions. Adv. Organomet. Chem. 66, 143–222 (2016).

    Article  Google Scholar 

  8. Su, B., Cao, Z. C. & Shi, Z. J. Exploration of earth-abundant transition metals (Fe, Co, and Ni) as catalysts in unreactive chemical bond activations. Acc. Chem. Res. 48, 886–896 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Tobisu, M. & Chatani, N. Cross-couplings using aryl ethers via C–O bond activation enabled by nickel catalysts. Acc. Chem. Res. 48, 1717–1726 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Ishizu, J., Yamamoto, T. & Yamamoto, A. Selective cleavage of C–O bonds in esters through oxidative addition to nickel (0) complexes. Chem. Lett. 5, 1091–1094 (1976).

    Article  Google Scholar 

  11. Wenkert, E., Michelotti, E. L. & Swindell, C. S. Nickel-induced conversion of carbon-oxygen into carbon-carbon bonds. One-step transformations of enol ethers into olefins and aryl ethers into biaryls. J. Am. Chem. Soc. 101, 2246–2247 (1979).

    Article  CAS  Google Scholar 

  12. Li, B. J. et al. Cross-coupling of aryl/alkenyl pivalates with organozinc reagents through nickel-catalyzed C—O bond activation under mild reaction conditions. Angew. Chem. Int. Ed. 47, 10124–10127 (2008).

    Article  CAS  Google Scholar 

  13. Quasdorf, K. W., Tian, X. & Garg, N. K. Cross-coupling reactions of aryl pivalates with boronic acids. J. Am. Chem. Soc. 130, 14422–14423 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Guan, B., Wang, Y., Li, B., Yu, D. & Shi, Z. Biaryl construction via Ni-catalyzed C–O activation of phenolic carboxylates. J. Am. Chem. Soc. 130, 14468–14470 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Cornella, J., Gómez-Bengoa, E. & Martin, R. Combined experimental and theoretical study on the reductive cleavage of inert C–O bonds with silanes: ruling out a classical Ni(0)/Ni(II) catalytic couple and evidence for Ni(I) intermediates. J. Am. Chem. Soc. 135, 1997–2009 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Somerville, R. J., Hale, L. V. A., Gómez-Bengoa, E., Burés, J. & Martin, R. Intermediacy of Ni–Ni species in sp2 C–O bond cleavage of aryl esters: relevance in catalytic C–Si bond formation. J. Am. Chem. Soc. 140, 8771–8780 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Muto, K., Yamaguchi, J., Lei, A. & Itami, K. Isolation, structure, and reactivity of an arylnickel(II) pivalate complex in catalytic C–H/C–O biaryl coupling. J. Am. Chem. Soc. 135, 16384–16387 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Guan, B. T. et al. Methylation of arenes via Ni-catalyzed aryl C–O/F activation. Chem. Commun. 1437–1439 (2008).

  19. Dankwardt, J. W. Nickel-catalyzed cross-coupling of aryl Grignard reagents with aromatic alkyl ethers: an efficient synthesis of unsymmetrical biaryls. Angew. Chem. Int. Ed. 43, 2428–2432 (2004).

    Article  CAS  Google Scholar 

  20. Li, Z., Zhang, S. L., Fu, Y., Guo, Q. X. & Liu, L. Mechanism of Ni-catalyzed selective C–O bond activation in cross-coupling of aryl esters. J. Am. Chem. Soc. 131, 8815–8823 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Hong, X., Liang, Y. & Houk, K. N. Mechanisms and origins of switchable chemoselectivity of Ni-catalyzed C(aryl)–O and C(acyl)–O activation of aryl esters with phosphine ligands. J. Am. Chem. Soc. 136, 2017–2025 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Quasdorf, K. W. et al. Suzuki–Miyaura cross-coupling of aryl carbamates and sulfamates: experimental and computational studies. J. Am. Chem. Soc. 133, 6352–6363 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haas, D., Hammann, J. M., Greiner, R. & Knochel, P. Recent developments in Negishi cross-coupling reactions. ACS Catal. 6, 1540–1552 (2016).

    Article  CAS  Google Scholar 

  24. Tortajada, A., Juliá-Hernández, F., Börjesson, M., Moragas, T. & Martin, R. Transition-metal-catalyzed carboxylation reactions with carbon dioxide. Angew. Chem. Int. Ed. 57, 15948–15982 (2018).

    Article  CAS  Google Scholar 

  25. Everson, D. A. & Weix, D. J. Cross-electrophile coupling: principles of reactivity and selectivity. J. Org. Chem. 79, 4793–4798 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weix, D. J. Methods and mechanisms for cross-electrophile coupling of Csp2 halides with alkyl electrophiles. Acc. Chem. Res. 48, 1767–1775 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Diccianni, J., Lin, Q. & Diao, T. Mechanisms of nickel-catalyzed coupling reactions and applications in alkene functionalization. Acc. Chem. Res. 53, 906–919 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Desnoyer, A. N. et al. Exploring regioselective bond cleavage and cross-coupling reactions using a low-valent nickel complex. Chem. Eur. J. 22, 4070–4077 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Chatupheeraphat, A. et al. Ligand-controlled chemoselective C(acyl)–O bond vs C(aryl)–C bond activation of aromatic esters in nickel catalyzed C(sp2)-C(sp3) cross-couplings. J. Am. Chem. Soc. 140, 3724–3735 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Guo, L. & Rueping, M. Decarbonylative cross-couplings: nickel catalyzed functional group interconversion strategies for the construction of complex organic molecules. Acc. Chem. Res. 51, 1185–1195 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Brauer, D. J. & Krüger, C. Bonding of aromatic hydrocarbons to nickel(0). Structure of bistricyclohexylphosphine (1,2-η2-anthracene)nickel(0)-toluene. Inorg. Chem. 16, 884–891 (1977).

    Article  CAS  Google Scholar 

  32. Isaeva, L. S., Drogunova, G. I., Peregudov, A. S. & Kravtsov, D. N. Arylbis(triphenylphosphinyl)nickel carboxylates. Russ. Chem. Bull. 37, 153–157 (1988).

    Article  Google Scholar 

  33. Christian, A. H., Müller, P. & Monfette, S. Nickel hydroxo complexes as intermediates in nickel-catalyzed Suzuki–Miyaura cross-coupling. Organometallics 33, 2134–2137 (2014).

    Article  CAS  Google Scholar 

  34. Chatt, J. & Shaw, B. L. Alkyls and aryls of transition metals. Part III. Nickel(II) derivatives. J. Chem. Soc. 1718–1729 (1960).

  35. Standley, E. A., Smith, S. J., Müller, P. & Jamison, T. F. A broadly applicable strategy for entry into homogeneous nickel(0) catalysts from air-stable nickel(II) complexes. Organometallics 33, 2012–2018 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Campeau, L. C. & Hazari, N. Cross-coupling and related reactions: connecting past success to the development of new reactions for the future. Organometallics 38, 3–35 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Diccianni, J. B., Hu, C. T. & Diao, T. Insertion of CO2 mediated by a (xantphos)NiI-alkyl species. Angew. Chem. Int. Ed. 58, 13865–13868 (2019).

    Article  CAS  Google Scholar 

  38. Witzke, R. J. & Tilley, T. D. A two-coordinate Ni(I) silyl complex: CO2 insertion and oxidatively-induced silyl migrations. Chem. Commun. 55, 6559–6562 (2019).

    Article  CAS  Google Scholar 

  39. Lin, Q. & Diao, T. Mechanism of Ni-catalyzed reductive 1,2-dicarbofunctionalization of alkenes. J. Am. Chem. Soc. 141, 17937–17948 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bontempelli, G., Corain, B. & de Nardo, L. Electrochemical reduction of dicyanobis(tertiary phosphine)nickel(II) complexes. J. Chem. Soc. Dalt. Trans. 1887–1891 (1977).

  41. Crabtree, R. H. The Organometallic Chemistry of the Transition Metals 6th edn (John Wiley & Sons, 2014).

  42. Messinis, A. M. et al. The highly surprising behaviour of diphosphine ligands in iron-catalysed Negishi cross-coupling. Nat. Catal. 2, 123–133 (2019).

    Article  CAS  Google Scholar 

  43. Eckert, P. & Organ, M. G. The role of LiBr and ZnBr2 on the cross-coupling of aryl bromides with Bu2Zn or BuZnBr. Chem. Eur. J. 25, 15751–15754 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Oeschger, R. J. & Chen, P. A heterobimetallic Pd–Zn complex: study of a d8–d10 bond in solid state, in solution, and in silico. Organometallics 36, 1465–1468 (2017).

    Article  CAS  Google Scholar 

  45. Böck, K., Feil, J. E., Karaghiosoff, K. & Koszinowski, K. Catalyst activation, deactivation, and degradation in palladium-mediated Negishi cross-coupling reactions. Chem. Eur. J. 21, 5548–5560 (2015).

    Article  PubMed  Google Scholar 

  46. Abdiaj, I. et al. Photoinduced palladium-catalyzed Negishi cross-couplings enabled by the visible-light absorption of palladium–zinc complexes. Angew. Chem. Int. Ed. 57, 13231–13236 (2018).

    Article  CAS  Google Scholar 

  47. Chass, G. A. et al. Density functional theory investigation of the alkyl–alkyl Negishi cross-coupling reaction catalyzed by N-heterocyclic carbene (NHC)–Pd complexes. Chem. Eur. J. 15, 4281–4288 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Álvarez, R., de Lera, A. R., Aurrecoechea, J. M. & Durana, A. Bimetallic intermediates in the formation of nucleophilic allenylzincs from allenylpalladiums: a DFT study. Organometallics 26, 2799–2802 (2007).

    Article  Google Scholar 

  49. García-Melchor, M. et al. Cationic intermediates in the Pd-catalyzed Negishi coupling. Kinetic and density functional theory study of alternative transmetalation pathways in the Me–Me coupling of ZnMe2 and trans-[PdMeCl(PMePh2)2]. J. Am. Chem. Soc. 133, 13519–13526 (2011).

    Article  PubMed  Google Scholar 

  50. Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel prize. Angew. Chem. Int. Ed. 51, 5062–5085 (2012).

    Article  CAS  Google Scholar 

  51. Negishi, E. I. Magical power of transition metals: past, present, and future (Nobel Lecture). Angew. Chem. Int. Ed. 50, 6738–6764 (2011).

    Article  CAS  Google Scholar 

  52. Craciun, R., Vincent, A. J., Shaughnessy, K. H. & Dixon, D. A. Prediction of reliable metal–PH3 bond energies for Ni, Pd, and Pt in the 0 and +2 oxidation states. Inorg. Chem. 49, 5546–5553 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Mohadjer Beromi, M., Brudvig, G. W., Hazari, N., Lant, H. M. C. & Mercado, B. Q. Synthesis and reactivity of paramagnetic nickel polypyridyl complexes relevant to C(sp2)-C(sp3) coupling reactions. Angew. Chem. Int. Ed. 58, 6094–6098 (2019).

    Article  CAS  Google Scholar 

  54. Mohadjer Beromi, M. et al. Mechanistic study of an improved Ni precatalyst for Suzuki−Miyaura reactions of aryl sulfamates: understanding the role of Ni(I) species. J. Am. Chem. Soc. 139, 922–936 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, S. Q. et al. Mechanism and origins of ligand-controlled stereoselectivity of Ni-catalyzed Suzuki–Miyaura coupling with benzylic esters: a computational study. J. Am. Chem. Soc. 139, 12994–13005 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Correa, A. & Martin, R. Ni-catalyzed direct reductive amidation via C–O bond cleavage. J. Am. Chem. Soc. 136, 7253–7256 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Correa, A., León, T. & Martin, R. Ni-catalyzed carboxylation of C(sp2)– and C(sp3)–O bonds with CO2. J. Am. Chem. Soc. 136, 1062–1069 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Isshiki, R., Inayama, N., Muto, K. & Yamaguchi, J. Ester transfer reaction of aromatic esters with haloarenes and arenols by a nickel catalyst. ACS Catal. 10, 3490–3494 (2020).

    Article  CAS  Google Scholar 

  59. Hofstra, J. L., Poremba, K. E., Shimozono, A. M. & Reisman, S. E. Nickel-catalyzed conversion of enol triflates into alkenyl halides. Angew. Chem. Int. Ed. 58, 14901–14905 (2019).

    Article  CAS  Google Scholar 

  60. Gu, J., Wang, X., Xue, W. & Gong, H. Nickel-catalyzed reductive coupling of alkyl halides with other electrophiles: concept and mechanistic considerations. Org. Chem. Front. 2, 1411–1421 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Institut Català d'Investigació Química (ICIQ) and the European Regional Development Fund (FEDER/MCI) (AEI/PGC2018-096839-B-I00) for financial support. C.S.D. thanks the European Union’s Horizon 2020 under the Marie Curie PREBIST grant agreement 754558, and R.J.S. thanks “la Caixa” Foundation (ID 100010434) under agreement LCF/BQ/SO15/52260010 for financial support. We sincerely thank E. Escudero, M. Martinez and J. Benet for X-ray crystallographic data.

Author information

Authors and Affiliations

Authors

Contributions

C.S.D. designed and carried out all of the chemical reactions and analysed the data. R.J.S. participated in preliminary experiments. C.S.D. and R.M. conceived and designed the experiments and prepared the manuscript. All authors contributed to discussions, commented and edited the manuscript.

Corresponding author

Correspondence to Ruben Martin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–50 and Tables 1–3.

Supplementary Data

CIF (crystallographic data) of structure 5a.

Supplementary Data

CIF (crystallographic data) of structure 5b.

Supplementary Data

CIF (crystallographic data) of structure 5c.

Supplementary Data

CIF (crystallographic data) of structure 6a.

Supplementary Data

CIF (crystallographic data) of structure 8.

Supplementary Data

CIF (crystallographic data) of structure 10.

Supplementary Data

CIF (crystallographic data) of structure 11.

Supplementary Data

CIF (crystallographic data) of structure 12.

Supplementary Data

CIF (crystallographic data) of structure 13.

Supplementary Data

CIF (crystallographic data) of structure 14.

Supplementary Data

CIF (crystallographic data) of structure 17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Day, C.S., Somerville, R.J. & Martin, R. Deciphering the dichotomy exerted by Zn(ii) in the catalytic sp2 C–O bond functionalization of aryl esters at the molecular level. Nat Catal 4, 124–133 (2021). https://doi.org/10.1038/s41929-020-00560-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-00560-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing