Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bridging adsorption analytics and catalytic kinetics for metal-exchanged zeolites

Abstract

Metal-exchanged zeolites have been widely used in industrial catalysis and separation, but fundamental understanding of their structure–property relationships has remained challenging, largely due to the lack of quantitative information concerning the atomic structures and reaction-relevant adsorption properties of the embedded metal active sites. Here, we report on using low-temperature reactive adsorption of NO to titrate copper-exchanged ZSM5 (Cu-ZSM5). Quantitative descriptors of the atomic structures and adsorption properties of Cu-ZSM5 are established by combining atomistic simulation, density functional theory c, operando molecular spectroscopy, chemisorption and titration measurements. These descriptors are then applied to interpret the catalytic performance of Cu-ZSM5 for NO decomposition. Linear correlations are established to bridge low-temperature adsorption analytics and high-temperature reaction kinetics, which are demonstrated to be generally applicable for understanding the structure–property relationships of metal-exchanged zeolites and foregrounded the development of advanced catalytic materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Graphical illustration and characterization of Cu sites in Cu-ZSM5 zeolites.
Fig. 2: DFT-calculated Cu dimer fractions in Cu-ZSM5.
Fig. 3: DFT-calculated pathways for the reactive adsorption of NO on Cu-ZSM5.
Fig. 4: Characterization and quantification of Cu dimers in Cu-ZSM5 zeolites.
Fig. 5: NO isothermal adsorption profiles.
Fig. 6: Catalytic performance and kinetics of NO decomposition.
Fig. 7: Catalytic study of MTM using Cu-ZSM5 from the literature and this work.

Data availability

The data that support the findings of this study are available on the Figshare platform at https://doi.org/10.6084/m9.figshare.13128506.v1 (ref. 55). Source data are provided with this paper.

References

  1. 1.

    Yang, J. C., Small, M. W., Grieshaber, R. V. & Nuzzo, R. G. Recent developments and applications of electron microscopy to heterogeneous catalysis. Chem. Soc. Rev. 41, 8179–8194 (2012).

    CAS  PubMed  Google Scholar 

  2. 2.

    Bordiga, S., Groppo, E., Agostini, G., van Bokhoven, J. A. & Lamberti, C. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem. Rev. 113, 1736–1850 (2013).

    CAS  PubMed  Google Scholar 

  3. 3.

    Zaera, F. New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions. Chem. Soc. Rev. 43, 7624–7663 (2014).

    CAS  PubMed  Google Scholar 

  4. 4.

    Wachs, I. E. & Roberts, C. A. Monitoring surface metal oxide catalytic active sites with Raman spectroscopy. Chem. Soc. Rev. 39, 5002–5017 (2010).

    CAS  PubMed  Google Scholar 

  5. 5.

    Norskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    CAS  PubMed  Google Scholar 

  6. 6.

    Zhang, R. D., Liu, N., Lei, Z. G. & Chen, B. H. Selective transformation of various nitrogen-containing exhaust gases toward N2 over zeolite catalysts. Chem. Rev. 116, 3658–3721 (2016).

    CAS  PubMed  Google Scholar 

  7. 7.

    Lamberti, C. et al. XAFS, IR, and UV-vis study of the CuI environment in CuI-ZSM-5. J. Phys. Chem. B 101, 344–360 (1997).

    CAS  Google Scholar 

  8. 8.

    Moden, B., Da Costa, P., Fonfe, B., Lee, D. K. & Iglesia, E. Kinetics and mechanism of steady-state catalytic NO decomposition reactions on Cu-ZSM5. J. Catal. 209, 75–86 (2002).

    CAS  Google Scholar 

  9. 9.

    Snyder, B. E. R., Bols, M. L., Schoonheydt, R. A., Sels, B. F. & Solomon, E. I. Iron and copper active sites in zeolites and their correlation to metalloenzymes. Chem. Rev. 118, 2718–2768 (2018).

    CAS  PubMed  Google Scholar 

  10. 10.

    Giordanino, F. et al. Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-β with similar Si/Al and Cu/Al ratios. Dalton Trans. 42, 12741–12761 (2013).

    CAS  PubMed  Google Scholar 

  11. 11.

    Woertink, J. S. et al. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Proc. Natl Acad. Sci. USA 106, 18908–18913 (2009).

    CAS  PubMed  Google Scholar 

  12. 12.

    Groothaert, M. H., Pierloot, K., Delabie, A. & Schoonheydt, R. A. Identification of Cu(ii) coordination structures in Cu-ZSM-5, based on a DFT/ab initio assignment of the EPR spectra. Phys. Chem. Chem. Phys. 5, 2135–2144 (2003).

    CAS  Google Scholar 

  13. 13.

    Groothaert, M. H., van Bokhoven, J. A., Battiston, A. A., Weckhuysen, B. M. & Schoonheydt, R. A. Bis(μ-oxo)dicopper in Cu-ZSM-5 and its role in the decomposition of NO: a combined in situ XAFS, UV−vis−near-IR, and kinetic study. J. Am. Chem. Soc. 125, 7629–7640 (2003).

    CAS  PubMed  Google Scholar 

  14. 14.

    Sajith, P. K., Shiota, Y. & Yoshizawa, K. Role of acidic proton in the decomposition of NO over dimeric Cu(i) active sites in Cu-ZSM-5 catalyst: a QM/MM study. ACS Catal. 4, 2075–2085 (2014).

    CAS  Google Scholar 

  15. 15.

    Moretti, G. et al. Dimeric Cu(i) species in Cu-ZSM-5 catalysts: the active sites for the NO decomposition. J. Catal. 232, 476–487 (2005).

    CAS  Google Scholar 

  16. 16.

    Tsai, M. L. et al. [Cu2O]2+ active site formation in Cu-ZSM-5: geometric and electronic structure requirements for N2O activation. J. Am. Chem. Soc. 136, 3522–3529 (2014).

    CAS  PubMed  Google Scholar 

  17. 17.

    Da Costa, P., Moden, B., Meitzner, G. D., Lee, D. K. & Iglesia, E. Spectroscopic and chemical characterization of active and inactive Cu species in NO decomposition catalysts based on Cu-ZSM5. Phys. Chem. Chem. Phys. 4, 4590–4601 (2002).

    CAS  Google Scholar 

  18. 18.

    Ravi, M. et al. Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites. Nat. Catal. 2, 485–494 (2019).

    CAS  Google Scholar 

  19. 19.

    Kustova, M. Y., Rasmussen, S. B., Kustov, A. L. & Christensen, C. H. Direct NO decomposition over conventional and mesoporous Cu-ZSM-5 and Cu-ZSM-11 catalysts: improved performance with hierarchical zeolites. Appl. Catal. B 67, 60–67 (2006).

    CAS  Google Scholar 

  20. 20.

    Xie, P. F. et al. CoZSM-11 catalysts for N2O decomposition: effect of preparation methods and nature of active sites. Appl. Catal. B 170, 34–42 (2015).

    Google Scholar 

  21. 21.

    Fanning, P. E. & Vannice, M. A. A DRIFTS study of Cu-ZSM-5 prior to and during its use for N2O decomposition. J. Catal. 207, 166–182 (2002).

    CAS  Google Scholar 

  22. 22.

    Beutel, T., Sarkany, J., Lei, G. D., Yan, J. Y. & Sachtler, W. M. H. Redox chemistry of Cu/ZSM-5. J. Phys. Chem. 100, 845–851 (1996).

    CAS  Google Scholar 

  23. 23.

    Loewenstein, W. The distribution of aluminum in the tetrahedra of silicates and aluminates. Am. Mineral. 39, 92–96 (1954); http://www.minsocam.org/ammin/AM39/AM39_92.pdf

  24. 24.

    Paolucci, C. et al. Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 357, 898–903 (2017).

    CAS  PubMed  Google Scholar 

  25. 25.

    Latimer, A. A. et al. Understanding trends in C–H bond activation in heterogeneous catalysis. Nat. Mater. 16, 225–229 (2017).

    CAS  PubMed  Google Scholar 

  26. 26.

    Zhao, Z. J., Kulkarni, A., Vilella, L., Norskov, J. K. & Studt, F. Theoretical insights into the selective oxidation of methane to methanol in copper-exchanged mordenite. ACS Catal. 6, 3760–3766 (2016).

    CAS  Google Scholar 

  27. 27.

    Larsen, A. H. et al. The atomic simulation environment—a Python library for working with atoms.J. Phys. Condens. Matter 29, 273002 (2017).

    Google Scholar 

  28. 28.

    Wang, S., He, Y., Jiao, W. Y., Wang, J. G. & Fan, W. B. Recent experimental and theoretical studies on Al siting/acid site distribution in zeolite framework. Curr. Opin. Chem. Eng. 23, 146–154 (2019).

    Google Scholar 

  29. 29.

    Itadani, A. et al. New information related to the adsorption model of N2 on CuMFI at room temperature. J. Phys. Chem. C 111, 16701–16705 (2007).

    CAS  Google Scholar 

  30. 30.

    Henriques, C. et al. An FT-IR study of NO adsorption over Cu-exchanged MFI catalysts: effect of Si/Al ratio, copper loading and catalyst pre-treatment. Appl. Catal. B 16, 79–95 (1998).

    CAS  Google Scholar 

  31. 31.

    Kosinov, N., Liu, C., Hensen, E. J. M. & Pidko, E. A. Engineering of transition metal catalysts confined in zeolites. Chem. Mater. 30, 3177–3198 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Agarwal, N. et al. Aqueous Au–Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358, 223–226 (2017).

    CAS  PubMed  Google Scholar 

  33. 33.

    Schneider, W. F., Hass, K. C., Ramprasad, R. & Adams, J. B. First-principles analysis of elementary steps in the catalytic decomposition of NO by Cu-exchanged zeolites. J. Phys. Chem. B 101, 4353–4357 (1997).

    CAS  Google Scholar 

  34. 34.

    Fanson, P. T., Stradt, M. W., Lauterbach, J. & Delgass, W. N. The effect of Si/Al ratio and copper exchange level on isothermal kinetic rate oscillations for N2O decomposition over Cu-ZSM-5: a transient FTIR study. Appl. Catal. B 38, 331–347 (2002).

    CAS  Google Scholar 

  35. 35.

    Hadjiivanov, K. I. Identification of neutral and charged NxOy surface species by IR spectroscopy. Catal. Rev. 42, 71–144 (2000).

    CAS  Google Scholar 

  36. 36.

    Morpurgo, S. A. DFT study on the mechanism of NO decomposition catalyzed by short-distance Cu(i) pairs in Cu-ZSM-5. Mol. Catal. 434, 96–105 (2017).

    CAS  Google Scholar 

  37. 37.

    Izquierdo, R., Rodriguez, L. J., Anez, R. & Sierraalta, A. Direct catalytic decomposition of NO with Cu-ZSM-5: a DFT-ONIOM study. J. Mol. Catal. A Chem. 348, 55–62 (2011).

    CAS  Google Scholar 

  38. 38.

    Konduru, M. V. & Chuang, S. S. C. Investigation of adsorbate reactivity during NO decomposition over different levels of copper ion-exchanged ZSM-5 using in situ IR technique. J. Phys. Chem. B 103, 5802–5813 (1999).

    CAS  Google Scholar 

  39. 39.

    Kuroda, Y., Kumashiro, R., Yoshimoto, T. & Nagao, M. Characterization of active sites on copper ion-exchanged ZSM-5-type zeolite for NO decomposition reaction. Phys. Chem. Chem. Phys. 1, 649–656 (1999).

    CAS  Google Scholar 

  40. 40.

    Lee, D. K. Thermodynamic features of the Cu-ZSM-5 catalyzed NO decomposition reaction. Korean J. Chem. Eng. 23, 547–554 (2006).

    CAS  Google Scholar 

  41. 41.

    Aranovich, G. L. & Donohue, M. D. Phase loops in density-functional-theory calculations of adsorption in nanoscale pores. Phys. Rev. E 60, 5552–5560 (1999).

    CAS  Google Scholar 

  42. 42.

    Aranovich, G. L. & Donohue, M. D. Adsorption compression: an important new aspect of adsorption behavior and capillarity. Langmuir 19, 2722–2735 (2003).

    CAS  Google Scholar 

  43. 43.

    Smeets, P. J. et al. Direct NO and N2O decomposition and NO-assisted N2O decomposition over Cu-zeolites: elucidating the influence of the Cu–Cu distance on oxygen migration. J. Catal. 245, 358–368 (2007).

    CAS  Google Scholar 

  44. 44.

    Teraishi, K. et al. Active site structure of Cu/ZSM-5: computational study. J. Phys. Chem. B 101, 8079–8085 (1997).

    CAS  Google Scholar 

  45. 45.

    Sushkevich, V. L., Palagin, D., Ranocchiari, M. & van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356, 523–527 (2017).

    CAS  PubMed  Google Scholar 

  46. 46.

    Verma, A. A. et al. NO oxidation: a probe reaction on Cu-SSZ-13. J. Catal. 312, 179–190 (2014).

    CAS  Google Scholar 

  47. 47.

    Pappas, D. K. et al. The nuclearity of the active site for methane to methanol conversion in Cu-mordenite: a quantitative assessment. J. Am. Chem. Soc. 140, 15270–15278 (2018).

    CAS  PubMed  Google Scholar 

  48. 48.

    Narsimhan, K., Iyoki, K., Dinh, K. & Roman-Leshkov, Y. Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature. ACS Cent. Sci. 2, 424–429 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Groothaert, M. H., Smeets, P. J., Sels, B. F., Jacobs, P. A. & Schoonheydt, R. A. Selective oxidation of methane by the bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. J. Am. Chem. Soc. 127, 1394–1395 (2005).

    CAS  PubMed  Google Scholar 

  50. 50.

    Kulkarni, A. R., Zhao, Z. J., Siahrostami, S., Norskov, J. K. & Studt, F. Cation-exchanged zeolites for the selective oxidation of methane to methanol. Catal. Sci. Technol. 8, 114–123 (2018).

    CAS  Google Scholar 

  51. 51.

    Yumura, T., Hirose, Y., Wakasugi, T., Kuroda, Y. & Kobayashi, H. Roles of water molecules in modulating the reactivity of dioxygen-bound Cu-ZSM-5 toward methane: a theoretical prediction. ACS Catal. 6, 2487–2495 (2016).

    CAS  Google Scholar 

  52. 52.

    Tomkins, P. et al. Isothermal cyclic conversion of methane into methanol over copper-exchanged zeolite at low temperature. Angew. Chem. Int. Ed. 55, 5467–5471 (2016).

    CAS  Google Scholar 

  53. 53.

    Xie, P. F. et al. Catalytic decomposition of N2O over Cu-ZSM-11 catalysts. Microporous Mesoporous Mater. 191, 112–117 (2014).

    CAS  Google Scholar 

  54. 54.

    Xing, B., Ma, J. H., Li, R. F. & Jiao, H. J. Location, distribution and acidity of Al substitution in ZSM-5 with different Si/Al ratios—a periodic DFT computation. Catal. Sci. Tech. 7, 5694–5708 (2017).

    CAS  Google Scholar 

  55. 55.

    Xie, P. F. et al. Bridging adsorption analytics and catalytic kinetics for metal-exchanged zeolites. Figshare https://doi.org/10.6084/m9.figshare.13128506.v1 (2020).

Download references

Acknowledgements

This work was supported by the Department of Energy, Advanced Research Projects Agency-Energy (ARPA-E). P.X. and C.W. also acknowledge support from the Petroleum Research Fund, American Chemical Society. A.K. acknowledges the use of computing resources provided by the National Energy Research Scientific Computing Center (NERSC; a US Department of Energy Office of Science User Facility operated under contract number DE-AC02-05CH11231) and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562.

Author information

Affiliations

Authors

Contributions

C.W. and P.X. conceived of the idea and experimental design. P.X. and T.P. carried out the experiments. P.X. and C.W. wrote the paper. M.D. and G.A. contributed to analysis of the NOad isotherms using Ono–Kondo coordinates. A.K. and J.G. performed DFT calculations for this work. All of the authors discussed the results and contributed to manuscript preparation.

Corresponding authors

Correspondence to Ambarish Kulkarni or Chao Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Dennis Palagin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Discussion, Tables 1–15, Figs. 1–38 and References.

Supplementary Data 1

Electronic structure calculations.

Source data

Source Data Fig. 1

Characterization of Cu sites in ZSM5.

Source Data Fig. 2

DFT-calculated fraction of Cu dimer in different ZSM5 frameworks.

Source Data Fig. 3

DFT-calculated pathways of reaction and adsorption of NO on Cu-ZSM5.

Source Data Fig. 4

Characterization and quantification of Cu dimers in Cu-ZSM5 zeolites.

Source Data Fig. 5

NO isothermal adsorption and corresponding analytics.

Source Data Fig. 6

Catalytic performance and kinetics of NO decomposition.

Source Data Fig. 7

Catalytic study of MTM using Cu-ZSM5 from the literature and this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, P., Pu, T., Aranovich, G. et al. Bridging adsorption analytics and catalytic kinetics for metal-exchanged zeolites. Nat Catal 4, 144–156 (2021). https://doi.org/10.1038/s41929-020-00555-0

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing