Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metal-free photosensitized oxyimination of unactivated alkenes with bifunctional oxime carbonates


The 1,2-aminoalcohol motif is one of the most prevalent structural components found in high-value organic molecules, including pharmaceuticals and natural products. Generally, its preparation requires pre-functionalized substrates and manipulations of one functional group at a time to achieve the desired regioisomer. Herein, we describe a metal-free photosensitization protocol for the installation of both amine and alcohol functionalities into alkene feedstocks in a single step. This approach is enabled by the identification of oxime carbonate as a suitable bifunctional source of both oxygen- and nitrogen-centred radicals for addition across alkenes with complementary regioselectivity compared to Sharpless aminohydroxylation. Use of orthogonal protection for amine and alcohol functionalities enables the direct synthetic diversification of one functional handle without influencing the other. With the use of readily available starting materials, convergent synthesis and mild reaction conditions, this process is well suited for use in various synthetic endeavours.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Strategies for vicinal aminoalcohol synthesis.
Fig. 2: Development of an intermolecular radical oxyimination of alkenes.
Fig. 3: Substrate scope of the intermolecular oxyimination of alkenes.
Fig. 4: Application of the metal-free oxyimination of alkenes.
Fig. 5: Mechanistic investigations and proposed reaction mechanism.

Data availability

Details about materials and methods, experimental procedures, mechanistic studies, characterization data and NMR spectra are available in the Supplementary Information. Additional data are available from the corresponding author upon reasonable request. The atomic coordinates of the optimized models for triplet energy calculation are provided in Supplementary Data 1. Crystallographic data are available from the Cambridge Crystallographic Data Centre with the following codes: 24 (CCDC 2004569), 26 (CCDC 2027139), 27 (CCDC 2004570) and 36 (CCDC 2027138).


  1. 1.

    Ager, D. J., Prakash, I. & Schaad, D. R. 1,2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis. Chem. Rev. 96, 835–876 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Michael, J. P. Indolizidine and quinolizidine alkaloids. Nat. Prod. Rep. 16, 675–696 (1999).

    CAS  Article  Google Scholar 

  3. 3.

    Breuer, M. et al. Industrial methods for the production of optically active intermediates. Angew. Chem. Int. Ed. 43, 788–824 (2004).

    CAS  Article  Google Scholar 

  4. 4.

    Bergmeier, S. C. The synthesis of vicinal amino alcohols. Tetrahedron 56, 2561–2576 (2000).

    CAS  Article  Google Scholar 

  5. 5.

    Sehl, T., Maugeri, Z. & Rother, D. Multi-step synthesis strategies towards 1,2-amino alcohols with special emphasis on phenylpropanolamines. J. Mol. Catal. B Enzym. 114, 65–71 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Karjalainen, O. K. & Koskinen, A. M. P. Diastereoselective synthesis of vicinal amino alcohols. Org. Biomol. Chem. 10, 4311–4326 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Espino, C. G. & Du Bois, J. A Rh-catalyzed C–H insertion reaction for the oxidative conversion of carbamates to oxazolidinones. Angew. Chem. Int. Ed. 40, 598–600 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    Su, B. et al. Palladium-catalyzed oxidation of β-C(sp3)–H bonds of primary alkylamines through a rare four-membered palladacycle intermediate. J. Am. Chem. Soc. 142, 7912–7919 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Fraunhoffer, K. J. & White, M. C. syn-1,2-Amino alcohols via diastereoselective allylic C–H amination. J. Am. Chem. Soc. 129, 7274–7276 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Wappes, E. A., Nakafuku, K. M. & Nagib, D. A. Directed β C–H amination of alcohols via radical relay chaperones. J. Am. Chem. Soc. 139, 10204–10207 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Sharpless, K. B., Patrick, D. W., Truesdale, L. K. & Biller, S. A. New reaction. Stereospecific vicinal oxyamination of olefins by alkyl imido osmium compounds. J. Am. Chem. Soc. 97, 2305–2307 (1975).

    CAS  Article  Google Scholar 

  12. 12.

    Legnani, L. & Morandi, B. Direct catalytic synthesis of unprotected 2-amino-1-phenylethanols from alkenes by using iron(ii) phthalocyanine. Angew. Chem. Int. Ed. 55, 2248–2251 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    O’Brien, P. Sharpless asymmetric aminohydroxylation: scope, limitations, and use in synthesis. Angew. Chem. Int. Ed. 38, 326–329 (1999).

    Article  Google Scholar 

  14. 14.

    Reed, N. L., Herman, M. I., Miltchev, V. P. & Yoon, T. P. Photocatalytic oxyamination of alkenes: copper(ii) salts as terminal oxidants in photoredox catalysis. Org. Lett. 20, 7345–7350 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Liu, G. & Stahl, S. S. Highly regioselective Pd-catalyzed intermolecular aminoacetoxylation of alkenes and evidence for cis-aminopalladation and SN2 C–O bond formation. J. Am. Chem. Soc. 128, 7179–7181 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Farid, U. & Wirth, T. Highly stereoselective metal-free oxyaminations using chiral hypervalent iodine reagents. Angew. Chem. Int. Ed. 51, 3462–3465 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Xu, H.-C. & Moeller, K. D. Intramolecular anodic olefin coupling reactions and the synthesis of cyclic amines. J. Am. Chem. Soc. 132, 2839–2844 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Fuller, P. H., Kim, J.-W. & Chemler, S. R. Copper catalyzed enantioselective intramolecular aminooxygenation of alkenes. J. Am. Chem. Soc. 130, 17638–17639 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Xu, H.-C. & Moeller, K. D. Intramolecular anodic olefin coupling reactions: the use of a nitrogen trapping group. J. Am. Chem. Soc. 130, 13542–13543 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Michaelis, D. J., Shaffer, C. J. & Yoon, T. P. Copper(ii)-catalyzed aminohydroxylation of olefins. J. Am. Chem. Soc. 129, 1866–1867 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Michaelis, D. J., Ischay, M. A. & Yoon, T. P. Activation of N-sulfonyl oxaziridines using copper(ii) catalysts: aminohydroxylations of styrenes and 1,3-dienes. J. Am. Chem. Soc. 130, 6610–6615 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Benkovics, T., Du, J., Guzei, I. A. & Yoon, T. P. Anionic halocuprate(ii) complexes as catalysts for the oxaziridine-mediated aminohydroxylation of olefins. J. Org. Chem. 74, 5545–5552 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Beaumont, S., Pons, V., Retailleau, P., Dodd, R. H. & Dauban, P. Catalytic oxyamidation of indoles. Angew. Chem. Int. Ed. 49, 1634–1637 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    Curle, J. M., Perieteanu, M. C., Humphreys, P. G., Kennedy, A. R. & Tomkinson, N. C. O. Alkene syn- and anti-oxyamination with malonoyl peroxides. Org. Lett. 22, 1659–1664 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Wu, F., Alom, N.-E., Ariyarathna, J. P., Naß, J. & Li, W. Regioselective formal [3+2] cycloadditions of urea substrates with activated and unactivated olefins for intermolecular olefin aminooxygenation. Angew. Chem. Int. Ed. 58, 11676–11680 (2019).

    CAS  Article  Google Scholar 

  26. 26.

    Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds 225–228 (CRC Press, 2003).

  27. 27.

    Davies, J., Booth, S. G., Essafi, S., Dryfe, R. A. W. & Leonori, D. Visible-light-mediated generation of nitrogen-centered radicals: metal-free hydroimination and iminohydroxylation cyclization reactions. Angew. Chem. Int. Ed. 54, 14017–14021 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    Davies, J., Morcillo, S. P., Douglas, J. J. & Leonori, D. Hydroxylamine derivatives as nitrogen‐radical precursors in visible‐light photochemistry. Chem. Eur. J. 24, 12154–12163 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Davies, J., Sheikh, N. S. & Leonori, D. Photoredox imino functionalizations of olefins. Angew. Chem. Int. Ed. 56, 13361–13365 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Jiang, H., Seidler, G. & Studer, A. Carboamination of unactivated alkenes via three‐component radical conjugate addition. Angew. Chem. Int. Ed. 58, 16528–16532 (2019).

    CAS  Article  Google Scholar 

  31. 31.

    Barthelemy, A.-L., Tuccio, B., Magnier, E. & Dagousset, G. Alkoxyl radicals generated under photoredox catalysis: a strategy for anti-Markovnikov alkoxylation reactions. Angew. Chem. Int. Ed. 57, 13790–13794 (2018).

    CAS  Article  Google Scholar 

  32. 32.

    Soni, V. K. et al. Reactivity tuning for radical–radical cross-coupling via selective photocatalytic energy transfer: access to amine building blocks. ACS Catal. 9, 10454–10463 (2019).

    CAS  Article  Google Scholar 

  33. 33.

    Patra, T., Bellotti, P., Strieth-Kalthoff, F. & Glorius, F. Photosensitized intermolecular carboimination of alkenes through the persistent radical effect. Angew. Chem. Int. Ed. 59, 3172–3177 (2020).

    CAS  Article  Google Scholar 

  34. 34.

    Fischer, H. & Radom, L. Factors controlling the addition of carbon-centered radicals to alkenes—an experimental and theoretical perspective. Angew. Chem. Int. Ed. 40, 1340–1371 (2001).

    CAS  Article  Google Scholar 

  35. 35.

    Strieth-Kalthoff, F., James, M. J., Teders, M., Pitzer, L. & Glorius, F. Energy transfer catalysis mediated by visible light: principles, applications, directions. Chem. Soc. Rev. 47, 7190–7202 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Ni, T., Caldwell, R. A. & Melton, L. A. The relaxed and spectroscopic energies of olefin triplets. J. Am. Chem. Soc. 111, 457–464 (1989).

    CAS  Article  Google Scholar 

  37. 37.

    Lowry, M. S. et al. Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(iii) complex. Chem. Mater. 17, 5712–5719 (2005).

    CAS  Article  Google Scholar 

  38. 38.

    Patra, T., Mukherjee, S., Ma, J., Strieth-Kalthoff, F. & Glorius, F. Visible-light-photosensitized aryl and alkyl decarboxylative functionalization reactions. Angew. Chem. Int. Ed. 58, 10514–10520 (2019).

    CAS  Article  Google Scholar 

  39. 39.

    Qin, T. et al. A general alkyl-alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 352, 801–805 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Chateauneuf, J., Lusztyk, J. & Ingold, K. U. Spectroscopic and kinetic characteristics of aroyloxyl radicals. 1. The 4-methoxybenzoyloxyl radical. J. Am. Chem. Soc. 110, 2877–2885 (1988).

    CAS  Article  Google Scholar 

  41. 41.

    Rauk, A., Yu, D. & Armstrong, D. A. Carboxyl free radicals: formyloxyl (HCOO) and acetyloxyl (CH3COO) revisited. J. Am. Chem. Soc. 116, 8222–8228 (1994).

    CAS  Article  Google Scholar 

  42. 42.

    Chateauneuf, J., Lusztyk, J., Maillard, B. & Ingold, K. U. First spectroscopic and absolute kinetic studies on (alkoxycarbonyl)oxyl radicals and an unsuccessful attempt to observe carbamoyloxyl radicals. J. Am. Chem. Soc. 110, 6727–6731 (1988).

    CAS  Article  Google Scholar 

  43. 43.

    McBurney, R. T., Harper, A. D., Slawin, A. M. Z. & Walton, J. C. An all-purpose preparation of oxime carbonates and resultant insights into the chemistry of alkoxycarbonyloxyl radicals. Chem. Sci. 3, 3436–3444 (2012).

    CAS  Article  Google Scholar 

  44. 44.

    Teders, M. et al. The energy-transfer-enabled biocompatible disulfide–ene reaction. Nat. Chem. 10, 981–988 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Mundt, R. et al. Thioxanthone in apolar solvents: ultrafast internal conversion precedes fast intersystem crossing. Phys. Chem. Chem. Phys. 18, 6637–6647 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Pitzer, L., Schäfers, F. & Glorius, F. Rapid assessment of the reaction-condition-based sensitivity of chemical transformations. Angew. Chem. Int. Ed. 58, 8572–8576 (2019).

    CAS  Article  Google Scholar 

  47. 47.

    Borah, A. J. & Phukan, P. Bromamine-T as an efficient amine source for Sharpless asymmetric aminohydroxylation of olefins. Tetrahedron Lett. 55, 713–715 (2014).

    CAS  Article  Google Scholar 

  48. 48.

    Peacock, D. M., Roos, C. B. & Hartwig, J. F. Palladium-catalyzed cross coupling of secondary and tertiary alkyl bromides with a nitrogen nucleophile. ACS Cent. Sci. 2, 647–652 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Mao, R., Balon, J. & Hu, X. Cross-coupling of alkyl redox-active esters with benzophenone imines: tandem photoredox and copper catalysis. Angew. Chem. Int. Ed. 57, 9501–9504 (2018).

    CAS  Article  Google Scholar 

  50. 50.

    Janey, J. M., Iwama, T., Kozmin, S. A. & Rawal, V. H. Racemic and asymmetric Diels–Alder reactions of 1-(2-oxazolidinon-3-yl)-3-siloxy-1,3-butadienes. J. Org. Chem. 65, 9059–9068 (2000).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Barontini, M., Bernini, R., Carastro, I., Gentili, P. & Romani, A. Synthesis and DPPH radical scavenging activity of novel compounds obtained from tyrosol and cinnamic acid derivatives. N. J. Chem. 38, 809–816 (2014).

    CAS  Article  Google Scholar 

  52. 52.

    Yang, G., Yu, Z., Jiang, X. & Yu, C. Synthesis of fluorinated aryl ethers via selective C–F functionalization with polyfluorobenzenes and carbonates under mild conditions. Tetrahedron Lett. 56, 4689–4693 (2015).

    CAS  Article  Google Scholar 

  53. 53.

    Yamauchi, T., Takahashi, H. & Higashiyama, K. Diastereoselective addition of Grignard reagents to chiral 1,3-oxazolidines having a N-diphenylmethyl substituent. Chem. Pharm. Bull. 46, 384–389 (1998).

    CAS  Article  Google Scholar 

  54. 54.

    Kudisch, M., Lim, C.-H., Thordarson, P. & Miyake, G. M. Energy transfer to Ni-amine complexes in dual catalytic, light-driven C–N cross-coupling reactions. J. Am. Chem. Soc. 141, 19479–19486 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Welin, E. R., Le, C., Arias-Rotondo, D. M., McCusker, J. K. & MacMillan, D. W. C. Photosensitized, energy transfer-mediated organometallic catalysis through electronically excited nickel(ii). Science 355, 380–385 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Edge, D. J. & Kochi, J. K. Electron spin resonance studies of carboxy radicals. Adducts to alkenes. J. Am. Chem. Soc. 95, 2635–2643 (1973).

    CAS  Article  Google Scholar 

  57. 57.

    Walling, C. & Cioffari, A. Cyclization of 5-hexenyl radicals. J. Am. Chem. Soc. 94, 6059–6064 (1972).

    CAS  Article  Google Scholar 

  58. 58.

    Walton, J. C. Functionalised oximes: emergent precursors for carbon-, nitrogen- and oxygen-centred radicals. Molecules 21, 63–85 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. 59.

    Leifert, D. & Studer, A. The persistent radical effect in organic synthesis. Angew. Chem. Int. Ed. 59, 74–108 (2020).

    CAS  Article  Google Scholar 

  60. 60.

    Teegardin, K., Day, J. I., Chan, J. & Weaver, J. Advances in photocatalysis: a microreview of visible light mediated ruthenium and iridium catalyzed organic transformations. Org. Process Res. Dev. 20, 1156–1163 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references


This work was generously supported by the Alexander von Humboldt Foundation (T.P.) and the Deutsche Forschungsgemeinschaft (Leibniz Award and SFB 858). We thank F. Strieth-Kalthoff, A. Köhrer, X. Zhang and A. Das for experimental and technical assistance, and F. Sandfort, J. L. Schwarz, P. Bellotti, T. Dalton and S. Singha for helpful discussions.

Author information




T.P. and F.G. conceived this work. T.P. and M.D. performed all the experiments and analysed the data. C.G.D. collected and analysed the X-ray crystallographic data. T.P. and F.G. prepared the manuscript with contributions from all authors.

Corresponding author

Correspondence to Frank Glorius.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–3, Figs. 1–14 and Refs. 1–32.

Supplementary Data 1

Computed atomic coordinates.

Supplementary Data 2

Crystallographic data of compound 24.

Supplementary Data 3

Crystallographic data of compound 26.

Supplementary Data 4

Crystallographic data of compound 27.

Supplementary Data 5

Crystallographic data of compound 36.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patra, T., Das, M., Daniliuc, C.G. et al. Metal-free photosensitized oxyimination of unactivated alkenes with bifunctional oxime carbonates. Nat Catal 4, 54–61 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing