Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Iron-catalysed asymmetric carboazidation of styrenes

Abstract

Carboazidation of olefins is an efficient process to convert hydrocarbons directly into nitrogen-containing molecules. Such chemicals find broad applications in medicine and material sciences. Despite the fast development of carboazidation reactions, asymmetric radical carboazidations are still elusive. Here, we report a radical asymmetric carboazidation of olefins via an iron-catalysed group transfer mechanism. The method affords valuable chiral halogenated organoazides from inexpensive industrial chemical feedstocks. This radical azidation reaction is supported by mechanistic studies and should inspire further development of enantioselective radical reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stereocontrol at a radical centre.
Fig. 2: Substrate scope with respective to olefins and carbon sources.
Fig. 3: Mechanistic studies.
Fig. 4: Synthetic use of the chiral azides.

Similar content being viewed by others

Data availability

Data relating to the characterization data of materials and products, general methods, optimization studies, experimental procedures, mechanistic studies, mass spectrometry, high-performance liquid chromatography and NMR spectra, computational studies are available in the Supplementary Information. Crystallographic data for compounds L2Fe(OTf)2, 63, 72A and 72B are available free of charge from the Cambridge Crystallographic Data Centre (CCDC) under reference numbers 1938900, 1938899, 2003644 and 2015243, respectively.

References

  1. Bräse, S. & Banert, K. (eds) Organic Azides: Syntheses and Applications (John Wiley & Sons, Ltd, 2009).

  2. Sharma, A. & Hartwig, J. F. Metal-catalysed azidation of tertiary C–H bonds suitable for late-stage functionalization. Nature 517, 600–604 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Renaud, P., Ollivier, C. & Panchaud, P. Radical carboazidation of alkenes: an efficient tool for the preparation of pyrrolidinone derivatives. Angew. Chem. Int. Ed. 41, 3460–3462 (2002).

    Article  CAS  Google Scholar 

  4. Wang, F., Qi, X., Liang, Z., Chen, P. & Liu, G. Copper-catalyzed intermolecular trifluoromethylazidation of alkenes: convenient access to CF3-containing alkyl azides. Angew. Chem. Int. Ed. 53, 1881–1886 (2014).

    Article  CAS  Google Scholar 

  5. Dagousset, G., Carboni, A., Magnier, E. & Masson, G. Photoredox-induced three-component azido- and aminotrifluoromethylation of alkenes. Org. Lett. 16, 4340–4343 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Bunescu, A., Ha, T. M., Wang, Q. & Zhu, J. Copper-catalyzed three-component carboazidation of alkenes with acetonitrile and sodium azide. Angew. Chem. Int. Ed. 56, 10555–10558 (2017).

    Article  CAS  Google Scholar 

  7. Geng, X., Lin, F., Wang, X. & Jiao, N. Azidofluoroalkylation of alkenes with simple fluoroalkyl iodides enabled by photoredox catalysis. Org. Lett. 19, 4738–4741 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Zhu, C.-L. et al. Iron(ii)-catalyzed azidotrifluoromethylation of olefins and N-heterocycles for expedient vicinal trifluoromethyl amine synthesis. ACS Catal. 8, 5032–5037 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, L. et al. (Salen)Mn(iii)-catalyzed chemoselective acylazidation of olefins. Chem. Sci. 9, 6085–6090 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xiong, H. et al. Iron-catalyzed carboazidation of alkenes and alkynes. Nat. Commun. 10, 122 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wu, K., Liang, Y. & Jiao, N. Azidation in the difunctionalization of olefins. Molecules 21, 352 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Jiang, H. & Studer, A. Intermolecular radical carboamination of alkenes. Chem. Soc. Rev. 49, 1790–1811 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Ge, L., Chiou, M.-F., Li, Y. & Bao, H. Radical azidation as a means of constructing C(sp3)-N3 bonds. Green Syn. Catal. https://doi.org/10.1016/j.gresc.2020.07.001 (2020).

  14. Jacobsen, E. N. Asymmetric catalysis of epoxide ring-opening reactions. Acc. Chem. Res. 33, 421–431 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Ding, P.-G., Hu, X.-S., Zhou, F. & Zhou, J. Catalytic enantioselective synthesis of α-chiral azides. Org. Chem. Front. 5, 1542–1559 (2018).

    Article  CAS  Google Scholar 

  16. Zhou, P. et al. Iron-catalyzed asymmetric haloazidation of alpha,beta-unsaturated ketones: construction of organic azides with two vicinal stereocenters. J. Am. Chem. Soc. 139, 13414–13419 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Seidl, F. J., Min, C., Lopez, J. A. & Burns, N. Z. Catalytic regio- and enantioselective haloazidation of allylic alcohols. J. Am. Chem. Soc. 140, 15646–15650 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, X., Qi, X., Hou, C., Chen, P. & Liu, G. Palladium(ii)-catalyzed enantioselective azidation of unactivated alkenes. Angew. Chem. Int. Ed. 59, 17239–17244 (2020).

    Article  CAS  Google Scholar 

  19. Liu, C., Wang, X., Li, Z., Cui, L. & Li, C. Silver-catalyzed decarboxylative radical azidation of aliphatic carboxylic acids in aqueous solution. J. Am. Chem. Soc. 137, 9820–9823 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Krasutsky, A. P., Kuehl, C. J. & Zhdankin, V. V. Direct azidation of adamantane and norbornane by stable azidoiodinanes. Synlett 1995, 1081–1082 (1995).

    Article  Google Scholar 

  21. Magnus, P., Lacour, J., Evans, P. A., Roe, M. B. & Hulme, C. hypervalent iodine chemistry: new oxidation reactions using the iodosylbenzene−trimethylsilyl azide reagent combination. direct α- and β-azido functionalization of triisopropylsilyl enol ethers. J. Am. Chem. Soc. 118, 3406–3418 (1996).

    Article  CAS  Google Scholar 

  22. Huang, X., Bergsten, T. M. & Groves, J. T. Manganese-catalyzed late-stage aliphatic C–H azidation. J. Am. Chem. Soc. 137, 5300–5303 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Chiou, M. F., Xiong, H., Li, Y., Bao, H. & Zhang, X. Revealing the iron-catalyzed beta-methyl scission of tert-butoxyl radicals via the mechanistic studies of carboazidation of alkenes. Molecules 25, 1224 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  24. Sibi, M. P., Manyem, S. & Zimmerman, J. Enantioselective radical processes. Chem. Rev. 103, 3263–3296 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, K. & Kong, W. Recent advances in transition metal-catalyzed asymmetric radical reactions. Chin. J. Chem. 36, 247–256 (2018).

    Article  CAS  Google Scholar 

  26. Wang, F., Chen, P. & Liu, G. Copper-catalyzed radical relay for asymmetric radical transformations. Acc. Chem. Res. 51, 2036–2046 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Huang, X. & Meggers, E. Asymmetric photocatalysis with bis-cyclometalated rhodium complexes. Acc. Chem. Res. 52, 833–847 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Yang, D., Zheng, B.-F., Gao, Q., Gu, S. & Zhu, N.-Y. Enantioselective PhSe-group-transfer tandem radical cyclization reactions catalyzed by a chiral Lewis acid. Angew. Chem. Int. Ed. 45, 255–258 (2005).

    Article  CAS  Google Scholar 

  29. Beeson, T. D., Mastracchio, A., Hong, J. B., Ashton, K. & Macmillan, D. W. Enantioselective organocatalysis using SOMO activation. Science 316, 582–585 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Herrmann, A. T., Smith, L. L. & Zakarian, A. A simple method for asymmetric trifluoromethylation of N-acyl oxazolidinones via Ru-catalyzed radical addition to zirconium enolates. J. Am. Chem. Soc. 134, 6976–6979 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu, R. & Buchwald, S. L. Enantioselective functionalization of radical intermediates in redox catalysis: copper-catalyzed asymmetric oxytrifluoromethylation of alkenes. Angew. Chem. Int. Ed. 52, 12655–12658 (2013).

    Article  CAS  Google Scholar 

  32. Rono, L. J., Yayla, H. G., Wang, D. Y., Armstrong, M. F. & Knowles, R. R. Enantioselective photoredox catalysis enabled by proton-coupled electron transfer: development of an asymmetric aza-pinacol cyclization. J. Am. Chem. Soc. 135, 17735–17738 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Hashimoto, T., Kawamata, Y. & Maruoka, K. An organic thiyl radical catalyst for enantioselective cyclization. Nat. Chem. 6, 702–705 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Ruiz Espelt, L., McPherson, I. S., Wiensch, E. M. & Yoon, T. P. Enantioselective conjugate additions of alpha-amino radicals via cooperative photoredox and Lewis acid catalysis. J. Am. Chem. Soc. 137, 2452–2455 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Murphy, J. J., Bastida, D., Paria, S., Fagnoni, M. & Melchiorre, P. Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals. Nature 532, 218–222 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Jiang, H., Lang, K., Lu, H., Wojtas, L. & Zhang, X. P. Asymmetric radical bicyclization of allyl azidoformates via cobalt(ii)-based metalloradical catalysis. J. Am. Chem. Soc. 139, 9164–9167 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Poremba, K. E., Kadunce, N. T., Suzuki, N., Cherney, A. H. & Reisman, S. E. Nickel-catalyzed asymmetric reductive cross-coupling to access 1,1-diarylalkanes. J. Am. Chem. Soc. 139, 5684–5687 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kern, N., Plesniak, M. P., McDouall, J. J. W. & Procter, D. J. Enantioselective cyclizations and cyclization cascades of samarium ketyl radicals. Nat. Chem. 9, 1198–1204 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Yin, Y. et al. Conjugate addition-enantioselective protonation of N-aryl glycines to alpha-branched 2-vinylazaarenes via cooperative photoredox and asymmetric catalysis. J. Am. Chem. Soc. 140, 6083–6087 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Proctor, R. S. J., Davis, H. J. & Phipps, R. J. Catalytic enantioselective Minisci-type addition to heteroarenes. Science 360, 419–422 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Li, J. et al. Formal enantioconvergent substitution of alkyl halides via catalytic asymmetric photoredox radical coupling. Nat. Commun. 9, 2445 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wang, Z., Yin, H. & Fu, G. C. Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins. Nature 563, 379–383 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dong, X. Y. et al. A general asymmetric copper-catalysed Sonogashira C(sp(3))-C(sp) coupling. Nat. Chem. 11, 1158–1166 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Biegasiewicz, K. F. et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 364, 1166–1169 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zheng, D. & Studer, A. Asymmetric synthesis of heterocyclic gamma-amino-acid and diamine derivatives by three-component radical cascade reactions. Angew. Chem. Int. Ed. 58, 15803–15807 (2019).

    Article  CAS  Google Scholar 

  46. Goswami, M. & de Bruin, B. Metal-catalysed azidation of organic molecules. Eur. J. Org. Chem. 2017, 1152–1176 (2017).

    Article  CAS  Google Scholar 

  47. Huang, X. & Groves, J. T. Taming azide radicals for catalytic C–H azidation. ACS Catal. 6, 751–759 (2015).

    Article  CAS  Google Scholar 

  48. Sibi, M. P. & Patil, K. Enantioselective H-atom transfer reactions: a new methodology for the synthesis of beta2-amino acids. Angew. Chem. Int. Ed. 43, 1235–1238 (2004).

    Article  CAS  Google Scholar 

  49. Aechtner, T., Dressel, M. & Bach, T. Hydrogen bond mediated enantioselectivity of radical reactions. Angew. Chem. Int. Ed. 43, 5849–5851 (2004).

    Article  CAS  Google Scholar 

  50. Zhu, S., Ruppel, J. V., Lu, H., Wojtas, L. & Zhang, X. P. Cobalt-catalyzed asymmetric cyclopropanation with diazosulfones: rigidification and polarization of ligand chiral environment via hydrogen bonding and cyclization. J. Am. Chem. Soc. 130, 5042–5043 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Jin, L. M. et al. Effective synthesis of chiral N-fluoroaryl aziridines through enantioselective aziridination of alkenes with fluoroaryl azides. Angew. Chem. Int. Ed. 52, 5309–5313 (2013).

    Article  CAS  Google Scholar 

  52. Chen, B., Fang, C., Liu, P. & Ready, J. M. Rhodium-catalyzed enantioselective radical addition of CX4 reagents to olefins. Angew. Chem. Int. Ed. 56, 8780–8784 (2017).

    Article  CAS  Google Scholar 

  53. Liang, Y., Wei, J., Qiu, X. & Jiao, N. Homogeneous oxygenase catalysis. Chem. Rev. 118, 4912–4945 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Milan, M., Bietti, M. & Costas, M. Enantioselective aliphatic C–H bond oxidation catalyzed by bioinspired complexes. Chem. Commun. 54, 9559–9570 (2018).

    Article  CAS  Google Scholar 

  55. Wu, W. et al. Trifluoroacetic anhydride promoted copper(I)-catalyzed interrupted click reaction: from 1,2,3-triazoles to 3-trifluoromethyl-substituted 1,2,4-triazinones. Angew. Chem. Int. Ed. 56, 10476–10480 (2017).

    Article  CAS  Google Scholar 

  56. Åhman, J., Birch, M., Haycock-Lewandowski, S. J., Long, J. & Wilder, A. Process research and scale-up of a commercialisable route to maraviroc (UK-427,857), a CCR-5 receptor antagonist. Org. Process Res. Dev. 12, 1104–1113 (2008).

    Article  CAS  Google Scholar 

  57. Kanemasa, S. et al. Cationic aqua complexes of the C2-symmetrictrans-chelating ligand (R,R)-4,6-dibenzofurandiyl-2,2‘-bis(4-phenyloxazoline). Absolute chiral induction in Diels–Alder reactions catalyzed by water-tolerant enantiopure Lewis acids. J. Org. Chem. 62, 6454–6455 (1997).

    Article  CAS  Google Scholar 

  58. Deng, Q. H., Bleith, T., Wadepohl, H. & Gade, L. H. Enantioselective iron-catalyzed azidation of beta-keto esters and oxindoles. J. Am. Chem. Soc. 135, 5356–5359 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Bauer, I. & Knölker, H.-J. Iron catalysis in organic synthesis. Chem. Rev. 115, 3170–3387 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Contreras-Garcia, J. et al. NCIPLOT: a program for plotting non-covalent interaction regions. J. Chem. Theor. Comput. 7, 625–632 (2011).

    Article  CAS  Google Scholar 

  61. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  62. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  63. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  CAS  Google Scholar 

  64. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 113, 6378–6396 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Frisch, M. J. et al. Gaussian 09, Revision D.01 (Gaussian Inc., 2013).

  69. Johnson, E. R. et al. Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Ding and X.L. Hou from Shanghai Institute of Organic Chemistry, A. Studer from University of Münster, X. Wang from Lanzhou University, W. Xie from Northwest A&F University and W. Su from our institute for inspiring discussions, D. Yuan and X. Jiang from our institute for X-ray crystallography analysis. We thank G.W.A. Milne for his writing suggestions. Supported by the National Key R&D Programme of China (grant no. 2017YFA0700103), the NSFC (grant nos. 21672213, 21871258 and 21922112), the Strategic Priority Research Programme of the Chinese Academy of Sciences (grant no. XDB20000000), the Haixi Institute of CAS (grant no. CXZX-2017-P01), the Innovative Research Teams Programme II of Fujian Normal University in China (grant no. IRTL1703), the Shenzhen STIC (grant no. JCYJ20170412150343516) and the Shenzhen San-Ming Project (grant no. SZSM201809085).

Author information

Authors and Affiliations

Authors

Contributions

H.B. directed the investigations and prepared the manuscript. L.G., H.Z., W.J., C.Y., X.L., X. Zhu and H.X. performed the synthetic experiments and analysed the experimental data. X. Zhang directed the calculation study and M.-F.C. completed the theoretical calculations. H.J. conducted the mass spectra studies, L.S. did the non-covalent bond interaction analysis. Y.L. double checked the data in the Supplementary Information. L.G., H.Z. and M.-F.C. contributed equally.

Corresponding authors

Correspondence to Xinhao Zhang or Hongli Bao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Tables 1–4, Methods, Discussion, Figs. 1–8 and references.

Supplementary Data

44 coordinate of optimized structures file as text.

Supplementary Data 1

X-ray crystal structure of iron catalyst A, L2Fe(OTf)2.

Supplementary Data 2

X-ray crystal structure of product 72B.

Supplementary Data 3

X-ray crystal structure of product 72A.

Supplementary Data 4

X-ray crystal structure of product 63.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, L., Zhou, H., Chiou, MF. et al. Iron-catalysed asymmetric carboazidation of styrenes. Nat Catal 4, 28–35 (2021). https://doi.org/10.1038/s41929-020-00551-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-00551-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing