Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unlocking the potential of the formate pathway in the photo-assisted Sabatier reaction

Abstract

Although solar irradiation has demonstrated beneficial synergy for catalytic CO2 hydrogenation, it has long been debated as to whether the observed photo-assisted catalytic enhancement has a photo-activation component or is driven solely by the heating effect. Here, we confirm that surface adsorbates play a critical role in photo-assisted CO2 activation. We isolate the rate-determining intermediate species in the photo-assisted Sabatier reaction by in situ isotopic spectroscopy. Specifically, we reveal that photo-activation of the formate adsorbate (HCO2*) offers an eightfold photo-enhancement on NiOx/La2O3@TiO2. Concurrently, the active La2O3@TiO2 support facilitates the adsorption of CO2, which may contribute to the sustained HCO2* formation and conversion. The findings are crucial as they provide surface intermediary insights in the design of catalysts for photo-assisted CO2 conversion. Ultimately, the understanding may unlock the solar-driven hydrogenation catalytic pathway for other reactions involving HCO2* such as the synthesis of methanol.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Isotopic tracking of surface-adsorbed intermediates based on 12C/13C isotopes.
Fig. 2: Transient SSITKA-DRIFTS spectra of the photo-assisted Sabatier reaction.
Fig. 3: Temperature dependence of the photo-assisted Sabatier reaction.
Fig. 4: Elemental mapping of the synthesized catalysts.
Fig. 5: Ni K-edge XAS of supported NiOx catalysts.
Fig. 6: Effect of light on the chemical states of supported NiOx catalysts.
Fig. 7: Proposed mechanism for the photo-assisted Sabatier reaction.

Data availability

The SSITKA-DRIFTS data that support the findings of this study are available in figshare with the identifier 10.6084/m9.figshare.1300394061. Additional data that support the plots within this paper and the other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Roy, S., Cherevotan, A. & Peter, S. C. Thermochemical CO2 hydrogenation to single carbon products: scientific and technological challenges. ACS Energy Lett. 3, 1938–1966 (2018).

    CAS  Google Scholar 

  2. 2.

    Kho, E. T. et al. A review on photo-thermal catalytic conversion of carbon dioxide. Green Energy Environ. 2, 204–217 (2017).

    Google Scholar 

  3. 3.

    Peter, S. C. Reduction of CO2 to chemicals and fuels: a solution to global warming and energy crisis. ACS Energy Lett. 3, 1557–1561 (2018).

    CAS  Google Scholar 

  4. 4.

    Sabatier, P. & Senderens, J.-B. Direct hydrogenation of the oxides of carbon in the presence of various finely-divided metals. Comptes Rendus 134, 689–691 (1902).

    Google Scholar 

  5. 5.

    Aldana, P. A. U. et al. Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy. Catal. Today 215, 201–207 (2013).

    CAS  Google Scholar 

  6. 6.

    Thampi, K. R., Kiwi, J. & Grätzel, M. Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature 327, 506–508 (1987).

    CAS  Google Scholar 

  7. 7.

    Thampi, K. R., Kiwi, J. & Grätzel, M. Room temperature photo-activation of methane on TiO2 supported molybdena. Catal. Lett. 1, 109–116 (1988).

    CAS  Google Scholar 

  8. 8.

    Vlachopoulos, N., Liska, P., Augustynski, J. & Gratzel, M. Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films. J. Am. Chem. Soc. 110, 1216–1220 (1988).

    CAS  Google Scholar 

  9. 9.

    Melsheimer, J., Guo, W., Ziegler, D., Wesemann, M. & Schlögl, R. Methanation of carbon dioxide over Ru/titania at room temperature: explorations for a photoassisted catalytic reaction. Catal. Lett. 11, 157–168 (1991).

    CAS  Google Scholar 

  10. 10.

    Ren, J. et al. Targeting activation of CO2 and H2 over Ru-loaded ultrathin layered double hydroxides to achieve efficient photothermal CO2 methanation in flow-type system. Adv. Energy Mater. 7, 1601657 (2017).

    Google Scholar 

  11. 11.

    Meng, X. et al. Photothermal conversion of CO2 into CH4 with H2 over group VIII nanocatalysts: an alternative approach for solar fuel production. Angew. Chem. Int. Ed. 126, 11662–11666 (2014).

    Google Scholar 

  12. 12.

    Jantarang, S., Lovell, E. C., Tan, T. H., Scott, J. & Amal, R. Role of support in photothermal carbon dioxide hydrogenation catalysed by Ni/CexTiyO2. Prog. Nat. Sci. Mater. Int. 28, 168–177 (2018).

    CAS  Google Scholar 

  13. 13.

    Song, H. et al. Light-enhanced carbon dioxide activation and conversion by effective plasmonic coupling effect of Pt and Au nanoparticles. ACS Appl. Mater. Interfaces 10, 408–416 (2018).

    CAS  PubMed  Google Scholar 

  14. 14.

    Huabin, Z. et al. Surface-plasmon-enhanced photodriven CO2 reduction catalyzed by metal–organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers. Adv. Mater. 28, 3703–3710 (2016).

    Google Scholar 

  15. 15.

    Liu, H. et al. Conversion of carbon dioxide by methane reforming under visible-light irradiation: surface-plasmon-mediated nonpolar molecule activation. Angew. Chem. Int. Ed. 54, 11545–11549 (2015).

    CAS  Google Scholar 

  16. 16.

    Upadhye, A. A. et al. Plasmon-enhanced reverse water gas shift reaction over oxide supported Au catalysts. Catal. Sci. Technol. 5, 2590–2601 (2015).

    CAS  Google Scholar 

  17. 17.

    Robatjazi, H. et al. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. Nat. Commun. 8, 27 (2017).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Zhang, X. et al. Plasmon-enhanced catalysis: distinguishing thermal and nonthermal effects. Nano Lett. 18, 1714–1723 (2018).

    CAS  PubMed  Google Scholar 

  19. 19.

    Li, K. et al. Balancing near-field enhancement, absorption, and scattering for effective antenna–reactor plasmonic photocatalysis. Nano Lett. 17, 3710–3717 (2017).

    CAS  PubMed  Google Scholar 

  20. 20.

    Kale, M. J., Avanesian, T., Xin, H., Yan, J. & Christopher, P. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate–metal bonds. Nano Lett. 14, 5405–5412 (2014).

    CAS  PubMed  Google Scholar 

  21. 21.

    Kim, C. et al. Energy-efficient CO2 hydrogenation with fast response using photoexcitation of CO2 adsorbed on metal catalysts. Nat. Commun. 9, 3027 (2018).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Xie, B. et al. Synergistic ultraviolet and visible light photo-activation enables intensified low-temperature methanol synthesis over copper/zinc oxide/alumina. Nat. Commun. 11, 1615 (2020).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Vogt, C. et al. Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nat. Catal. 1, 127–134 (2018).

    CAS  Google Scholar 

  24. 24.

    Solis-Garcia, A., Louvier-Hernandez, J. F., Almendarez-Camarillo, A. & Fierro-Gonzalez, J. C. Participation of surface bicarbonate, formate and methoxy species in the carbon dioxide methanation catalyzed by ZrO2-supported Ni. Appl. Catal. B Environ. 218, 611–620 (2017).

    CAS  Google Scholar 

  25. 25.

    Li, Y. F. et al. Pd@HyWO3 – x nanowires efficiently catalyze the CO2 heterogeneous reduction reaction with a pronounced light effect. ACS Appl. Mater. Interfaces 11, 5610–5615 (2019).

    CAS  PubMed  Google Scholar 

  26. 26.

    Liu, H. et al. Light assisted CO2 reduction with methane over group VIII metals: universality of metal localized surface plasmon resonance in reactant activation. Appl. Catal. B Environ. 209, 183–189 (2017).

    CAS  Google Scholar 

  27. 27.

    Tan, T. H. et al. C–C cleavage by Au/TiO2 during ethanol oxidation: understanding bandgap photoexcitation and plasmonically mediated charge transfer via quantitative in situ DRIFTS. ACS Catal. 6, 8021–8029 (2016).

    CAS  Google Scholar 

  28. 28.

    Tan, T. H. et al. Multipronged validation of oxalate C–C bond cleavage driven by Au–TiO2 interfacial charge transfer using operando DRIFTS. ACS Catal. 8, 7158–7163 (2018).

    CAS  Google Scholar 

  29. 29.

    Gao, J., Jia, L., Fang, W., Li, Q. & Song, H. Methanation of carbon dioxide over the LaNiO3 perovskite catalysts activated under the reactant stream. J. Fuel Chem. Technol. 37, 573–577 (2009).

    CAS  Google Scholar 

  30. 30.

    Song, H., Yang, J., Zhao, J. & Chou, L. Methanation of carbon dioxide over a highly dispersed Ni/La2O3 catalyst. Chin. J. Catal. 31, 21–23 (2010).

    CAS  Google Scholar 

  31. 31.

    Si, J. et al. Ni nanoparticles highly dispersed on ZrO2 and modified with La2O3 for CO methanation. RSC Adv. 6, 12699–12707 (2016).

    CAS  Google Scholar 

  32. 32.

    Guo, J., Lou, H., Zhu, Y. & Zheng, X. La-based perovskite precursors preparation and its catalytic activity for CO2 reforming of CH4. Mater. Lett. 57, 4450–4455 (2003).

    CAS  Google Scholar 

  33. 33.

    Pan, Q., Peng, J., Sun, T., Wang, S. & Wang, S. Insight into the reaction route of CO2 methanation: promotion effect of medium basic sites. Catal. Commun. 45, 74–78 (2014).

    Google Scholar 

  34. 34.

    Wierzbicki, D. et al. Novel Ni–La-hydrotalcite derived catalysts for CO2 methanation. Catal. Commun. 83, 5–8 (2016).

    CAS  Google Scholar 

  35. 35.

    Nabgan, W. et al. Production of hydrogen via steam reforming of acetic acid over Ni and Co supported on La2O3 catalyst. Int. J. Hydrog. Energy 42, 8975–8985 (2017).

    CAS  Google Scholar 

  36. 36.

    Lv, Y., Xin, Z., Meng, X., Tao, M. & Bian, Z. Ni based catalyst supported on KIT-6 silica for CO methanation: confinement effect of three dimensional channel on NiO and Ni particles. Microporous Mesoporous Mater. 262, 89–97 (2018).

    CAS  Google Scholar 

  37. 37.

    Rivero-Mendoza, E. D., Stanley, N. J., Scott, J. & Aguey-Zinsou, K.-F. An alumina-supported Ni–La-based catalyst for producing synthetic natural gas. Catalysts 6, 170 (2016).

    Google Scholar 

  38. 38.

    Wang, F. et al. Active site-dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation. J. Am. Chem. Soc. 138, 6298–6305 (2016).

    CAS  PubMed  Google Scholar 

  39. 39.

    Wang, X., Shi, H., Kwak, J. H. & Szanyi, J. Mechanism of CO2 hydrogenation on Pd/Al2O3 catalysts: kinetics and transient DRIFTS-MS studies. ACS Catal. 5, 6337–6349 (2015).

    CAS  Google Scholar 

  40. 40.

    Clarke, D. B. & Bell, A. T. An infrared study of methanol synthesis from CO2 on clean and potassium-promoted Cu/SiO2. J. Catal. 154, 314–328 (1995).

    CAS  Google Scholar 

  41. 41.

    Stanley, J. N. G. et al. Plasmonic effects on CO2 reduction over bimetallic Ni–Au catalysts. Chem. Eng. Sci. 194, 94–104 (2019).

    CAS  Google Scholar 

  42. 42.

    Ashok, J., Ang, M. L. & Kawi, S. Enhanced activity of CO2 methanation over Ni/CeO2–ZrO2 catalysts: influence of preparation methods. Catal. Today 281, 304–311 (2017).

    CAS  Google Scholar 

  43. 43.

    Aziz, M. A. A. et al. Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Appl. Catal. B Environ. 147, 359–368 (2014).

    CAS  Google Scholar 

  44. 44.

    Dreyer, J. A. H. et al. Influence of the oxide support reducibility on the CO2 methanation over Ru-based catalysts. Appl. Catal. B Environ. 219, 715–726 (2017).

    CAS  Google Scholar 

  45. 45.

    Tan, T. H. et al. Understanding plasmon and bandgap photoexcitation effects on the thermal-catalytic oxidation of ethanol by TiO2-supported gold. ACS Catal. 6, 1870–1879 (2016).

    CAS  Google Scholar 

  46. 46.

    Liu, C. et al. Carbon dioxide conversion to methanol over size-selected Cu4 clusters at low pressures. J. Am. Chem. Soc. 137, 8676–8679 (2015).

    CAS  PubMed  Google Scholar 

  47. 47.

    Ren, J. et al. Insights into the mechanisms of CO2 methanation on Ni(111) surfaces by density functional theory. Appl. Surf. Sci. 351, 504–516 (2015).

    CAS  Google Scholar 

  48. 48.

    Murugan, A. V., Samuel, V., Navale, S. C. & Ravi, V. Phase evolution of NiTiO3 prepared by coprecipitation method. Mater. Lett. 60, 1791–1792 (2006).

    CAS  Google Scholar 

  49. 49.

    Bowker, M. & Fourré, E. Direct interactions between metal nanoparticles and support: STM studies of Pd on TiO2(110). Appl. Surf. Sci. 254, 4225–4229 (2008).

    CAS  Google Scholar 

  50. 50.

    Gougoussis, C. et al. Intrinsic charge transfer gap in NiO from Ni K-edge X-ray absorption spectroscopy. Phys. Rev. B 79, 45118 (2009).

    Google Scholar 

  51. 51.

    Zhang, J. et al. Increasing the oxygen vacancy density on the TiO2 surface by La-doping for dye-sensitized solar cells. J. Phys. Chem. C 114, 18396–18400 (2010).

    CAS  Google Scholar 

  52. 52.

    Bowker, M. & Waugh, K. C. From surface science to catalysis: the importance of methoxy and formate species on Cu single crystals and industrial catalysts. Surf. Sci. 650, 93–102 (2016).

    CAS  Google Scholar 

  53. 53.

    Zhang, F. et al. Temperature-dependent optical properties of titanium oxide thin films studied by spectroscopic ellipsometry. Appl. Phys. Express 6, 121101 (2013).

    Google Scholar 

  54. 54.

    Pirzadeh, Z., Pakizeh, T., Miljkovic, V., Langhammer, C. & Dmitriev, A. Plasmon–interband coupling in nickel nanoantennas. ACS Photonics 1, 158–162 (2014).

    CAS  Google Scholar 

  55. 55.

    Chen, J. et al. Plasmonic nickel nanoantennas. Small 7, 2341–2347 (2011).

    CAS  PubMed  Google Scholar 

  56. 56.

    Ehrenreich, H., Philipp, H. R. & Olechna, D. J. Optical properties and Fermi surface of nickel. Phys. Rev. 131, 2469–2477 (1963).

    CAS  Google Scholar 

  57. 57.

    González-Cortés, S. L. & Imbert, F. E. Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS). Appl. Catal. A Gen. 452, 117–131 (2013).

    Google Scholar 

  58. 58.

    Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    CAS  PubMed  Google Scholar 

  59. 59.

    Cairns, R. W. & Ott, E. X-ray studies of the system nickel–oxygen–water. I. Nickelous oxide and hydroxide. J. Am. Chem. Soc. 55, 527–533 (1933).

    CAS  Google Scholar 

  60. 60.

    Marcin, W. Fityk: a general-purpose peak fitting program. J. Appl. Crystallogr. 43, 1126–1128 (2010).

    Google Scholar 

  61. 61.

    Tan, T. H. et al. Transient SSITKA-DRIFTS Spectra of Photo-assisted Sabatier Reaction on La Promoted NiOx Catalysts (figshare, 2020); https://doi.org/10.6084/m9.figshare.13003940

Download references

Acknowledgements

This work was supported by the Australian Research Council (ARC) under the Laureate Fellowship Scheme FL140100081 and ARC Discovery Project DP170102410. R.A.T. gratefully acknowledges the ARC under the DECRA Fellowship Scheme (DE160100131). We acknowledge the use of the facilities within the UNSW Mark Wainwright Analytical Centre and the UoW Electron Microscopy Centre. In addition, this work used the 10-ID-B and 11-ID-B beamlines of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. 10-ID-B is managed by the Materials Research Collaborative Access Team (MRCAT), which is supported by the Department of Energy and the MRCAT member institutions. We also thank J. Wright for assistance with XAS experiments at 10-ID-B.

Author information

Affiliations

Authors

Contributions

T.H.T., B.X., J.S., Y.H.N. and R.A. conceived and designed the experiments. T.H.T., B.X. and S.F.B.A. synthesized and characterized the catalysts with inputs from J.S., Y.H.N. and R.A. T.H.T., B.X. and S.F.B.A. performed the isotopic spectroscopies. Further deconvolution of spectral data was conducted and interpreted by T.H.T., B.X. and H.Y.M.T. with inputs from J.S. and R.A. K.-F.A.-Z. aided in the set-up and provided support with the isotopic spectroscopies. T.H.T., J.S., Y.H.N., R.A.T., K.-F.A.-Z. and R.A. contributed to the design and assembly of the online detection and isotropic spectroscopy systems. N.B. performed the XAS measurements. N.B. and T.H.T. interpreted the XAS results. T.H.T., B.X., J.S. and R.A. wrote the Article. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Rose Amal or Jason Scott.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–29, Tables 1–3 and notes 1–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tan, T.H., Xie, B., Ng, Y.H. et al. Unlocking the potential of the formate pathway in the photo-assisted Sabatier reaction. Nat Catal 3, 1034–1043 (2020). https://doi.org/10.1038/s41929-020-00544-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing