Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Water-induced deactivation of cobalt-based Fischer–Tropsch catalysts

The Fischer–Tropsch product, water, is regularly hypothesized to be the driving force for catalyst deactivation. Cobalt nanoparticles may be oxidized to CoO, form mixed-metal oxides with supports, or sinter to larger particles. This Comment discusses the feasibility of these deactivation pathways, highlighting the importance of in situ characterization.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential pathways of water-induced deactivation of cobalt-based catalysts.
Fig. 2: Thresholds for the oxidation of cobalt nanoparticles.

References

  1. Bartholomew, C. H. Appl. Catal. A Gen. 212, 17–60 (2001).

    Article  CAS  Google Scholar 

  2. Dry, M. E. FT Catalysts in Fischer–Tropsch Technology (eds Steynberg, A. P. & Dry, M. E.) 152, 533–600 (Elsevier, 2004).

  3. van de Loosdrecht, J. et al. Catal. Today 123, 293–302 (2007).

    Article  Google Scholar 

  4. Tavasoli, A., Malek Abbaslou, R. M. & Dalai, A. K. Appl. Catal. A Gen. 346, 58–64 (2008).

    Article  CAS  Google Scholar 

  5. Dalai, A. K. & Davis, B. H. Appl. Catal. A Gen. 348, 1–15 (2008).

    Article  CAS  Google Scholar 

  6. Tsakoumis, N. E., Rønning, M., Borg, Ø., Rytter, E. & Holmen, A. Catal. Today 154, 162–182 (2010).

    Article  CAS  Google Scholar 

  7. van Berge, P. J., van de Loosdrecht, J., Barradas, S. & van der Kraan, A. M. Catal. Today 58, 321–334 (2000).

    Article  Google Scholar 

  8. Ellis, P. R., Enache, D. I., James, D. W., Jones, D. S. & Kelly, G. J. Nat. Catal. 2, 623–631 (2019).

    Article  CAS  Google Scholar 

  9. Amrute, A. P., Jeske, K., Łodziana, Z., Prieto, G. & Schüth, F. Chem. Mater. 32, 4369–4374 (2020).

    Article  CAS  Google Scholar 

  10. Claeys, M. & van Steen, E. Basic Studies. in Fischer–Tropsch Technology (eds. Steynberg, A. P. & Dry, M. E.) 152, 601–680 (Elsevier, 2004).

  11. van Steen, E. et al. J. Phys. Chem. B 109, 3575–3577 (2005).

    Article  Google Scholar 

  12. Kocić, S., Corral Valero, M., Schweitzer, J.-M. & Raybaud, P. Appl. Catal. A Gen. 590, 117332 (2020).

    Article  Google Scholar 

  13. Wolf, M., Kotzé, H., Fischer, N. & Claeys, M. Faraday Discuss. 197, 243–268 (2017).

    Article  CAS  Google Scholar 

  14. Wolf, M., Mutuma, B. K., Coville, N. J., Fischer, N. & Claeys, M. ACS Catal. 8, 3985–3989 (2018).

    Article  CAS  Google Scholar 

  15. Saib, A. M., Borgna, A., van de Loosdrecht, J., van Berge, P. J. & Niemantsverdriet, J. W. J. Phys. Chem. B 110, 8657–8664 (2006).

    Article  CAS  Google Scholar 

  16. Saib, A. M., Borgna, A., van de Loosdrecht, J., van Berge, P. J. & Niemantsverdriet, J. W. Appl. Catal. A Gen. 312, 12–19 (2006).

    Article  CAS  Google Scholar 

  17. Moodley, D. J. et al. Catal. Today 171, 192–200 (2011).

    Article  CAS  Google Scholar 

  18. Tsakoumis, N. E. et al. J. Am. Chem. Soc. 139, 3706–3715 (2017).

    Article  CAS  Google Scholar 

  19. Scalbert, J. et al. Chem. Commun. 50, 7866–7869 (2014).

    Article  CAS  Google Scholar 

  20. Bezemer, G. L. et al. J. Am. Chem. Soc. 128, 3956–3964 (2006).

    Article  CAS  Google Scholar 

  21. Fischer, N., van Steen, E. & Claeys, M. J. Catal. 299, 67–80 (2013).

    Article  CAS  Google Scholar 

  22. Sadeqzadeh, M. et al. Ind. Eng. Chem. Res. 51, 11955–11964 (2012).

    Article  CAS  Google Scholar 

  23. Wolf, M., Fischer, N. & Claeys, M. J. Catal. 374, 199–207 (2019).

    Article  CAS  Google Scholar 

  24. Claeys, M. et al. ACS Catal. 5, 841–852 (2015).

    Article  CAS  Google Scholar 

  25. Fischer, N., Clapham, B., Feltes, T., van Steen, E. & Claeys, M. Angew. Chem. Int. Ed. 53, 1342–1345 (2014).

    Article  CAS  Google Scholar 

  26. van Rensburg, W. J. et al. J. Phys. Chem. C 121, 16739–16753 (2017).

    Article  Google Scholar 

  27. Wolf, M. et al. ACS Catal. 9, 4902–4918 (2019).

    Article  CAS  Google Scholar 

  28. Wolf, M. et al. Catal. Today 342, 71–78 (2020).

    Article  CAS  Google Scholar 

  29. Kiss, G., Kliewer, C. E., DeMartin, G. J., Culross, C. C. & Baumgartner, J. E. J. Catal. 217, 127–140 (2003).

    CAS  Google Scholar 

  30. Moodley, D. J., van de Loosdrecht, J., Saib, A. M. & Niemantsverdriet, H. J. W. The formation and influence of carbon on cobalt-based Fischer–Tropsch catalysts: An integrated review. in Advances in Fischer–Tropsch Synthesis, Catalysts, and Catalysis (eds. Davis, B. H. & Occelli, M. L.) 49–81 (CRC Press, 2010).

  31. Storsæter, S., Borg, Ø., Blekkan, E. A., Tøtdal, B. & Holmen, A. Catal. Today 100, 343–347 (2005).

    Article  Google Scholar 

  32. Storsæter, S., Borg, Ø., Blekkan, E. A. & Holmen, A. J. Catal. 231, 405–419 (2005).

    Article  Google Scholar 

  33. Lögdberg, S. et al. Appl. Catal. A Gen. 393, 109–121 (2011).

    Article  Google Scholar 

  34. Jacobs, G. et al. Appl. Catal. A Gen. 247, 335–343 (2003).

    Article  CAS  Google Scholar 

  35. van Deelen, T. W. et al. Appl. Catal. A Gen. 593, 117441 (2020).

    Article  Google Scholar 

  36. Moya-Cancino, J. G. et al. ChemCatChem 11, 1–7 (2019).

    Article  Google Scholar 

  37. van de Loosdrecht, J., Datt, M. & Visagie, J. L. Top. Catal. 57, 430–436 (2014).

    Article  Google Scholar 

  38. Prieto, G. et al. ACS Catal. 5, 3323–3335 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the DSI-NRF Centre of Excellence in Catalysis (c*change), the University of Cape Town (UCT), and the German Academic Exchange Service (DAAD) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to planning, writing and editing of the manuscript.

Corresponding author

Correspondence to Michael Claeys.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, M., Fischer, N. & Claeys, M. Water-induced deactivation of cobalt-based Fischer–Tropsch catalysts. Nat Catal 3, 962–965 (2020). https://doi.org/10.1038/s41929-020-00534-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-00534-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing