Advances in supramolecular host-mediated reactivity

Abstract

Since the trailblazing discoveries of Lehn, Cram and Pedersen, supramolecular chemistry has established itself as a cornerstone of organic chemistry. Supramolecular hosts offer defined microenvironments that mimic the active sites of enzymes, utilizing specific host–guest interactions to enable remarkable rate enhancements and product selectivity. The development of a diverse array of self-assembled hosts, coupled with the increased demand for shorter and greener synthetic routes, have spurred significant progress in the field of supramolecular catalysis. This Review Article covers recent advances in the field, ranging from novel organic reactivity aided by supramolecular hosts to catalytic cooperation between hosts and organometallic compounds or metal nanoparticles. Strides have also been made in the synthetic application of these hosts in site-selective substrate modifications and challenging photochemical reactions. These efforts have enabled the incorporation of non-covalent macromolecular catalysis in natural product syntheses, evidencing their unique advantages as a synthetic tool, and their powerful potential for practical applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Organic transformations catalysed by supramolecular hosts.
Fig. 2: Organic transformations promoted by supramolecular hosts.
Fig. 3: Organometallic transformations promoted supramolecular hosts.
Fig. 4: Host-mediated metal nanoparticle synthesis and reactivity.
Fig. 5: Regio- and site-selective reactivity rendered by stoichiometric amounts of supramolecular hosts.
Fig. 6: Regio- and site-selective reactivity catalysed by supramolecular hosts.
Fig. 7: Photochemical reactions aided by supramolecular hosts.

References

  1. 1.

    Punekar, N. S. ENZYMES: Catalysis, Kinetics and Mechanisms (Springer Singapore, 2018).

  2. 2.

    Wolfenden, R. Degrees of difficulty of water-consuming reactions in the absence of enzymes. Chem. Rev. 106, 3379–3396 (2006).

    CAS  PubMed  Google Scholar 

  3. 3.

    Radzicka, A. & Wolfenden, R. A proficient enzyme. Science 267, 90–93 (1995).

    CAS  PubMed  Google Scholar 

  4. 4.

    Nothling, M. D. et al. Synthetic Catalysts Inspired by Hydrolytic Enzymes. ACS Catal. 9, 168–187 (2019).

    CAS  Google Scholar 

  5. 5.

    Meeuwissen, J. & Reek, J. N. H. Supramolecular catalysis beyond enzyme mimics. Nat. Chem. 2, 615–621 (2010).

    CAS  PubMed  Google Scholar 

  6. 6.

    Raynal, M., Ballester, P., Vidal-Ferran, A. & Van Leeuwen, P. W. N. M. Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem. Soc. Rev. 43, 1734–1787 (2014).

    CAS  PubMed  Google Scholar 

  7. 7.

    Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 2495–2496 (1967).

    CAS  Google Scholar 

  8. 8.

    Lehn, J. M. Cryptates: The chemistry of macropolycyclic inclusion complexes. Acc. Chem. Res. 11, 49–57 (1978).

    CAS  Google Scholar 

  9. 9.

    Sherman, J. C. & Cram, D. J. Carcerand interiors provide a new phase of matter. J. Am. Chem. Soc. 111, 4527–4528 (1989).

    CAS  Google Scholar 

  10. 10.

    Cram, D. J. The design of molecular hosts, guests, and their complexes (Nobel lecture). Angew. Chem. Int. Ed. 27, 1009–1020 (1988).

    Google Scholar 

  11. 11.

    Masson, E., Ling, X., Joseph, R., Kyeremeh-Mensah, L. & Lu, X. Cucurbituril chemistry: a tale of supramolecular success. RSC Advances 2, 1213–1247 (2012).

    CAS  Google Scholar 

  12. 12.

    Breslow, R. & Dong, S. D. Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev. 98, 1997–2011 (1998).

    CAS  PubMed  Google Scholar 

  13. 13.

    Barrow, S. J., Kasera, S., Rowland, M. J., Del Barrio, J. & Scherman, O. A. cucurbituril-based molecular recognition. Chem. Rev. 115, 12320–12406 (2015).

    CAS  PubMed  Google Scholar 

  14. 14.

    Crini, G. Review: A history of cyclodextrins. Chem. Rev. 114, 10940–10975 (2014).

    CAS  PubMed  Google Scholar 

  15. 15.

    Jon, S. Y., Ko, Y. H., Park, S. H., Kim, H. J. & Kim, K. A facile, stereoselective [2 + 2] photoreaction mediated by cucurbit[8]uril. Chem. Commun. 1, 1938–1939 (2001).

    Google Scholar 

  16. 16.

    Pattabiraman, M., Sivaguru, J. & Ramamurthy, V. Cucurbiturils as reaction containers for photocycloaddition of olefins. Isr. J. Chem. 58, 264–275 (2018).

    CAS  Google Scholar 

  17. 17.

    Zhang, Q. & Tiefenbacher, K. Hexameric resorcinarene capsule is a brønsted acid: Investigation and application to synthesis and catalysis. J. Am. Chem. Soc. 135, 16213–16219 (2013).

    CAS  PubMed  Google Scholar 

  18. 18.

    Gibb, C. L. D. & Gibb, B. C. Well-defined, organic nanoenvironments in water: The hydrophobic effect drives a capsular assembly. J. Am. Chem. Soc. 126, 11408–11409 (2004).

    CAS  PubMed  Google Scholar 

  19. 19.

    Shimizu, K. D. & Rebek, J. Synthesis and assembly of self-complementary calix[4]arenes. Proc. Natl Acad. Sci. USA 92, 12403–12407 (1995).

    CAS  PubMed  Google Scholar 

  20. 20.

    Santamaría, J., Martín, T., Hilmersson, G., Craig, S. L. & Rebek, J. Guest exchange in an encapsulation complex: A supramolecular substitution reaction. Proc. Natl Acad. Sci. USA 96, 8344–8347 (1999).

    PubMed  Google Scholar 

  21. 21.

    Yoshizawa, M., Klosterman, J. K. & Fujita, M. Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. Angew. Chem. Int. Ed. 48, 3418–3438 (2009).

    CAS  Google Scholar 

  22. 22.

    Mal, P., Schultz, D., Beyeh, K., Rissanen, K. & Nitschke, J. R. An Unlockable–relockable iron cage by subcomponent self-assembly. Angew. Chem. Int. Ed. 47, 8297–8301 (2008).

    CAS  Google Scholar 

  23. 23.

    Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nano. 15, 256–271 (2020).

    CAS  Google Scholar 

  24. 24.

    Brown, C. J., Toste, F. D., Bergman, R. G. & Raymond, K. N. Supramolecular catalysis in metal–ligand cluster hosts. Chem. Rev. 115, 3012–3035 (2015).

    CAS  PubMed  Google Scholar 

  25. 25.

    Yoshizawa, M., Klosterman, J. K. & Fujita, M. Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. Angew. Chem. Int. Ed. 48, 3418–3438 (2009).

    CAS  Google Scholar 

  26. 26.

    Fang, Y. et al. Catalytic reactions within the cavity of coordination cages. Chem. Soc. Rev. 48, 4707–4730 (2019).

    CAS  PubMed  Google Scholar 

  27. 27.

    Catti, L., Zhang, Q. & Tiefenbacher, K. Advantages of catalysis in self-assembled molecular capsules. Chem. - A Eur. J. 22, 9060–9066 (2016).

    CAS  Google Scholar 

  28. 28.

    Leenders, S. H. A. M., Gramage-Doria, R., De Bruin, B. & Reek, J. N. H. Transition metal catalysis in confined spaces. Chem. Soc. Rev. 44, 433–448 (2015).

    CAS  PubMed  Google Scholar 

  29. 29.

    Dydio, P. & Reek, J. N. H. Supramolecular control of selectivity in transition-metal catalysis through substrate preorganization. Chem. Sci. 5, 2135–2145 (2014).

    CAS  Google Scholar 

  30. 30.

    Ramasamy, B. & Ghosh, P. The developing concept of bifunctional catalysis with transition metal N-heterocyclic carbene complexes. Eur. J. Inorg. Chem. 2016, 1448–1465 (2016).

    CAS  Google Scholar 

  31. 31.

    Carboni, S., Gennari, C., Pignataro, L. & Piarulli, U. Supramolecular ligand–ligand and ligand–substrate interactions for highly selective transition metal catalysis. Dalt. Trans. 40, 4355–4373 (2011).

    CAS  Google Scholar 

  32. 32.

    Pluth, M. D., Bergman, R. G. & Raymond, K. N. Acid catalysis in basic solution: a supramolecular host promotes orthoformate hydrolysis. Science 316, 85–88 (2007).

    CAS  PubMed  Google Scholar 

  33. 33.

    Dong, Vy. M., Fiedler, Dorothea, Carl, Barbara, Bergman, R. G. & Raymond, K. N. Molecular recognition and stabilization of iminium ions in water. J. Am. Chem. Soc. 128, 14464–14465 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Kaphan, D. M., Toste, F. D., Bergman, R. G. & Raymond, K. N. Enabling new modes of reactivity via constrictive binding in a supramolecular-assembly-catalyzed aza-Prins cyclization. J. Am. Chem. Soc. 137, 9202–9205 (2015). The aza-Prins reaction within the tetrahedral host studied by Raymond and co-workers not only experiences significant rate enhancements due to the host, but undergoes an unusual 1,5-hydride shift.

    CAS  PubMed  Google Scholar 

  35. 35.

    Bierschenk, S. M., Bergman, R. G., Raymond, K. N. & Toste, F. D. A Nanovessel-catalyzed three-component aza-Darzens reaction. J. Am. Chem. Soc. 142, 733–737 (2020).

    CAS  PubMed  Google Scholar 

  36. 36.

    Bräuer, T. M., Zhang, Q. & Tiefenbacher, K. Iminium Catalysis inside a self-assembled supramolecular capsule: modulation of enantiomeric excess. Angew. Chem. Int. Ed. 55, 7698–7701 (2016).

    Google Scholar 

  37. 37.

    Bräuer, T. M., Zhang, Q. & Tiefenbacher, K. Iminium catalysis inside a self-assembled supramolecular capsule: scope and mechanistic studies. J. Am. Chem. Soc. 139, 17500–17507 (2017).

    PubMed  Google Scholar 

  38. 38.

    Catti, L. & Tiefenbacher, K. Intramolecular hydroalkoxylation catalyzed inside a self-assembled cavity of an enzyme-like host structure. Chem. Commun. 51, 892–894 (2015).

    CAS  Google Scholar 

  39. 39.

    Catti, L., Pöthig, A. & Tiefenbacher, K. Host-Catalyzed Cyclodehydration-rearrangement cascade reaction of unsaturated tertiary alcohols. Adv. Synth. Catal. 359, 1331–1338 (2017).

    CAS  Google Scholar 

  40. 40.

    La Sorella, G., Sperni, L., Ballester, P., Strukul, G. & Scarso, A. Hydration of aromatic alkynes catalyzed by a self-assembled hexameric organic capsule. Catal. Sci. Technol. 6, 6031–6036 (2016).

    Google Scholar 

  41. 41.

    Catti, L. & Tiefenbacher, K. Brønsted acid-catalyzed carbonyl–olefin metathesis inside a self-assembled supramolecular host. Angew. Chem. Int. Ed. 57, 14589–14592 (2018).

    CAS  Google Scholar 

  42. 42.

    Christianson, D. W. Structural biology and chemistry of the terpenoid cyclases. Chem. Rev. 106, 3412–3442 (2006).

    CAS  PubMed  Google Scholar 

  43. 43.

    Pronin, S. V. & Shenvi, R. A. Synthesis of highly strained terpenes by non-stop tail-to-head polycyclization. Nat. Chem. 4, 915–920 (2012).

    CAS  PubMed  Google Scholar 

  44. 44.

    Zhang, Q. & Tiefenbacher, K. Terpene cyclization catalysed inside a self-assembled cavity. Nat. Chem. 7, 197–202 (2015). Tiefenbacher and co-workers realize the direct synthesis of complex monoterpenoid products from the ionization and cyclization of nerol and geraniol within a resorcinarene capsule.

    CAS  PubMed  Google Scholar 

  45. 45.

    Zhang, Q., Catti, L., Pleiss, J. & Tiefenbacher, K. Terpene cyclizations inside a supramolecular catalyst: leaving-group-controlled product selectivity and mechanistic studies. J. Am. Chem. Soc. 139, 11482–11492 (2017).

    CAS  PubMed  Google Scholar 

  46. 46.

    Zhang, Q., Rinkel, J., Goldfuss, B., Dickschat, J. S. & Tiefenbacher, K. Sesquiterpene cyclizations catalysed inside the resorcinarene capsule and application in the short synthesis of isolongifolene and isolongifolenone. Nat. Catal. 1, 609–615 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Zhang, Q. & Tiefenbacher, K. Sesquiterpene cyclizations inside the hexameric resorcinarene capsule: total synthesis of δ-selinene and mechanistic studies. Angew. Chem. Int. Ed. 58, 12688–12695 (2019).

    CAS  Google Scholar 

  48. 48.

    Syntrivanis, L. D. et al. Four-step access to the sesquiterpene natural product presilphiperfolan-1β-ol and unnatural derivatives via supramolecular catalysis. J. Am. Chem. Soc. 142, 5894–5900 (2020).

    CAS  PubMed  Google Scholar 

  49. 49.

    Hong, C. M. et al. Deconvoluting the role of charge in a supramolecular catalyst. J. Am. Chem. Soc. 140, 6591–6595 (2018).

    CAS  PubMed  Google Scholar 

  50. 50.

    Wang, K. et al. Electrostatic control of macrocyclization reactions within nanospaces. J. Am. Chem. Soc. 141, 6740–6747 (2019).

    CAS  PubMed  Google Scholar 

  51. 51.

    Cullen, W., Misuraca, M. C., Hunter, C. A., Williams, N. H. & Ward, M. D. Highly efficient catalysis of the Kemp elimination in the cavity of a cubic coordination cage. Nat. Chem. 8, 231–236 (2016). The cubic, 16+ charge, supramolecular host reported by Ward and co-workers is an efficient catalyst for the Kemp elimination, a reaction involving an anionic transition state.

    CAS  PubMed  Google Scholar 

  52. 52.

    Cullen, W. et al. Catalysis in a cationic coordination cage using a cavity-bound guest and surface-bound anions: inhibition, activation, and autocatalysis. J. Am. Chem. Soc. 140, 2821–2828 (2018).

    CAS  PubMed  Google Scholar 

  53. 53.

    Holloway, L. R. et al. Tandem reactivity of a self-assembled cage catalyst with endohedral acid groups. J. Am. Chem. Soc. 140, 8078–8081 (2018).

    CAS  PubMed  Google Scholar 

  54. 54.

    Howlader, P., Das, P., Zangrando, E. & Mukherjee, P. S. Urea-functionalized self-assembled molecular prism for heterogeneous catalysis in water. J. Am. Chem. Soc. 138, 1668–1676 (2016).

    CAS  PubMed  Google Scholar 

  55. 55.

    Martí-Centelles, V., Lawrence, A. L. & Lusby, P. J. High activity and efficient turnover by a simple, self-assembled ‘artificial Diels–Alderase’. J. Am. Chem. Soc. 140, 2862–2868 (2018).

    PubMed  Google Scholar 

  56. 56.

    Ueda, Y., Ito, H., Fujita, D. & Fujita, M. Permeable self-assembled molecular containers for catalyst isolation enabling two-step cascade reactions. J. Am. Chem. Soc. 139, 6090–6093 (2017).

    CAS  PubMed  Google Scholar 

  57. 57.

    Takezawa, H., Shitozawa, K. & Fujita, M. Enhanced reactivity of twisted amides inside a molecular cage. Nat. Chem. 1–5 (2020).

  58. 58.

    Hong, C. M., Bergman, R. G., Raymond, K. N. & Toste, F. D. Self-assembled tetrahedral hosts as supramolecular catalysts. Acc. Chem. Res. 51, 2447–2455 (2018).

    CAS  PubMed  Google Scholar 

  59. 59.

    Kaphan, D. M., Levin, M. D., Bergman, R. G., Raymond, K. N. & Toste, F. D. A supramolecular microenvironment strategy for transition metal catalysis. Science 350, 1235–1238 (2015). The Raymond tetrahedral host catalyses reductive elimination of ethane from a gold (III) complex with up to 107-times rate acceleration, demonstrating the ability of hosts to increase the rate of elementary organometallic steps without changing inner sphere ligands.

    CAS  PubMed  Google Scholar 

  60. 60.

    Welborn, V. V., Li, W.-L. & Head-Gordon, T. Interplay of water and a supramolecular capsule for catalysis of reductive elimination reaction from gold. Nat. Commun. 11, 415 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Levin, M. D. et al. Scope and mechanism of cooperativity at the intersection of organometallic and supramolecular catalysis. J. Am. Chem. Soc. 138, 9682–9693 (2016).

    CAS  PubMed  Google Scholar 

  62. 62.

    Bender, T. A., Morimoto, M., Bergman, R. G., Raymond, K. N. & Toste, F. D. Supramolecular host-selective activation of iodoarenes by encapsulated organometallics. J. Am. Chem. Soc. 141, 1701–1706 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    García-Simón, C. et al. Enantioselective hydroformylation by a Rh-catalyst entrapped in a supramolecular metallocage. J. Am. Chem. Soc. 137, 2680–2687 (2015).

    PubMed  Google Scholar 

  64. 64.

    Jiao, J. et al. Design and assembly of chiral coordination cages for asymmetric sequential reactions. J. Am. Chem. Soc. 140, 2251–2259 (2018).

    CAS  PubMed  Google Scholar 

  65. 65.

    Yu, F. et al. Control over electrochemical water oxidation catalysis by preorganization of molecular ruthenium catalysts in self-assembled nanospheres. Angew. Chem. Int. Ed. 57, 11247–11251 (2018).

    CAS  Google Scholar 

  66. 66.

    Gonell, S., Caumes, X., Orth, N., Ivanović-Burmazović, I. & Reek, J. N. H. Self-assembled M12L24 nanospheres as a reaction vessel to facilitate a dinuclear Cu(i) catalyzed cyclization reaction. Chem. Sci. 10, 1316–1321 (2019).

    CAS  PubMed  Google Scholar 

  67. 67.

    Wang, Q. et al. Self-assembled nanospheres with multiple endohedral binding sites pre-organize catalysts and substrates for highly efficient reactions. Nat. Chem. 8, 225–230 (2016). A cationic host studied by Reek and co-workers encapsulates multiple gold catalysts, increasing their local effective concentration beyond their solubility in bulk solution, and pre-organizes acetylenic acid substrates, leading to selective cyclization.

    CAS  PubMed  Google Scholar 

  68. 68.

    Gonell, S. & Reek, J. N. H. Gold-catalyzed cycloisomerization reactions within guanidinium M12L24 nanospheres: the effect of local concentrations. ChemCatChem 11, 1458–1464 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Wang, S. et al. Ultrafine Pt nanoclusters confined in a calixarene-based {Ni24} coordination cage for high-efficient hydrogen evolution reaction. J. Am. Chem. Soc. 138, 16236–16239 (2016).

    CAS  PubMed  Google Scholar 

  70. 70.

    Fang, Y. et al. Formation of a highly reactive cobalt nanocluster crystal within a highly negatively charged porous coordination cage. Angew. Chem. Int. Ed. 57, 5283–5287 (2018).

    CAS  Google Scholar 

  71. 71.

    Fang, Y. et al. Ultra-small face-centered-cubic Ru nanoparticles confined within a porous coordination cage for dehydrogenation. Chem 4, 555–563 (2018).

    CAS  Google Scholar 

  72. 72.

    Mondal, B., Acharyya, K., Howlader, P. & Mukherjee, P. S. Molecular cage impregnated palladium nanoparticles: efficient, additive-free heterogeneous catalysts for cyanation of aryl halides. J. Am. Chem. Soc. 138, 1709–1716 (2016).

    CAS  PubMed  Google Scholar 

  73. 73.

    Mondal, B. & Mukherjee, P. S. Cage encapsulated gold nanoparticles as heterogeneous photocatalyst for facile and selective reduction of nitroarenes to azo compounds. J. Am. Chem. Soc. 140, 12592–12601 (2018).

    CAS  PubMed  Google Scholar 

  74. 74.

    Yu, Y. & Rebek, J. Reactions of folded molecules in water. Acc. Chem. Res. 51, 3031–3040 (2018).

    CAS  PubMed  Google Scholar 

  75. 75.

    Mosca, S., Yu, Y., Gavette, J. V., Da Zhang, K. & Rebek, J. A Deep cavitand templates lactam formation in water. J. Am. Chem. Soc. 137, 14582–14585 (2015). A deep cavitand host synthesized by Rebek and co-workers enable macrocyclic lactam formation via encapsulation of the α,ω-amino acid substrate, selectively promoting intramolecular reactivity over oligomerization.

    CAS  PubMed  Google Scholar 

  76. 76.

    Wu, N., Petsalakis, I. D., Theodorakopoulos, G., Yu, Y. & Rebek, J. Cavitands as Containers for α, ω-Dienes and Chaperones for Olefin Metathesis. Angew. Chem. Int. Ed. 57, 15091–15095 (2018).

    CAS  Google Scholar 

  77. 77.

    Masseroni, D., Mosca, S., Mower, M. P., Blackmond, D. G. & Rebek, J. Cavitands as Reaction Vessels and Blocking Groups for Selective Reactions in Water. Angew. Chem. Int. Ed. 55, 8290–8293 (2016).

    CAS  Google Scholar 

  78. 78.

    Angamuthu, V., Rahman, F., Petroselli, M., Li, Y., Yu, Y. & Rebek, J. Mono epoxidation of α,ω-dienes using NBS in a water-soluble cavitand. Org. Chem. Front. 6, 3220–3223 (2019).

    CAS  Google Scholar 

  79. 79.

    Angamuthu, V., Petroselli, M., Rahman, F. U., Yu, Y. & Rebek, J. Binding orientation and reactivity of alkyl α,ω-dibromides in water-soluble cavitands. Org. Biomol. Chem. 17, 5279–5282 (2019).

    CAS  PubMed  Google Scholar 

  80. 80.

    Shi, Q., Masseroni, D. & Rebek, J. Macrocyclization of folded diamines in cavitands. J. Am. Chem. Soc. 138, 10846–10848 (2016).

    CAS  PubMed  Google Scholar 

  81. 81.

    Takezawa, H., Kanda, T., Nanjo, H. & Fujita, M. Site-selective functionalization of linear diterpenoids through U-shaped folding in a confined artificial cavity. J. Am. Chem. Soc. 141, 5112–5115 (2019). Fujita and co-workers employ a previously reported Pd-host to selectively functionalize geranyllinalool at the terminal prenyl moiety, representing a large advance in substrate complexity.

    CAS  PubMed  Google Scholar 

  82. 82.

    Fuertes-Espinosa, C. et al. supramolecular fullerene sponges as catalytic masks for regioselective functionalization of C60. Chem 6, 169–186 (2020).

    CAS  Google Scholar 

  83. 83.

    García-Simón, C. et al. Sponge-like molecular cage for purification of fullerenes. Nat. Commun. 5, 1–9 (2014).

    Google Scholar 

  84. 84.

    Slagt, V. F., Reek, J. N. H., Kamer, P. C. J. & van Leeuwen, P. W. N. M. Assembly of encapsulated transition metal catalysts. Angew. Chem. Int. Ed. 40, 4271–4274 (2001).

    CAS  Google Scholar 

  85. 85.

    Nurttila, S. S., Linnebank, P. R., Krachko, T. & Reek, J. N. H. Supramolecular approaches to control activity and selectivity in hydroformylation catalysis. ACS Catal. 8, 3469–3488 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Wang, X. et al. Tuning the porphyrin building block in self-assembled cages for branched-selective hydroformylation of propene. Chem. Eur. J. 23, 14769–14777 (2017).

    CAS  PubMed  Google Scholar 

  87. 87.

    Nurttila, S. S. et al. Size-selective hydroformylation by a rhodium catalyst confined in a supramolecular cage. Chem. Eur. J. 25, 609–620 (2018).

    PubMed  Google Scholar 

  88. 88.

    Bai, S. et al. Rational redesign of a regioselective hydroformylation catalyst for 3-butenoic acid by supramolecular substrate orientation. ChemCatChem 11, 5322–5329 (2019).

    CAS  Google Scholar 

  89. 89.

    Jongkind, L. J., Elemans, J. A. A. W. & Reek, J. N. H. Cofactor controlled encapsulation of a rhodium hydroformylation catalyst. Angew. Chem. Int. Ed. 58, 2696–2699 (2019).

    CAS  Google Scholar 

  90. 90.

    Roland, S., Suarez, J. M. & Sollogoub, M. Confinement of metal–N-heterocyclic carbene complexes to control reactivity in catalytic reactions. Chem. Eur. J. 24, 12464–12473 (2018).

    CAS  PubMed  Google Scholar 

  91. 91.

    Zhang, P. et al. Cyclodextrin cavity-induced mechanistic switch in copper-catalyzed hydroboration. Angew. Chem. Int. Ed. 56, 10821–10825 (2017).

    CAS  Google Scholar 

  92. 92.

    Xu, G. et al. Capturing the monomeric (L)CuH in NHC-capped cyclodextrin: cavity-controlled chemoselective hydrosilylation of α,β-unsaturated ketones. Angew. Chem. Int. Ed. 59, 7591–7597 (2020).

    CAS  Google Scholar 

  93. 93.

    Bender, T. A., Bergman, R. G., Raymond, K. N. & Toste, F. D. A supramolecular strategy for selective catalytic hydrogenation independent of remote chain length. J. Am. Chem. Soc. 141, 11806–11810 (2019). Using Ga-naphthalene and pyrene hosts, Toste and co-workers demonstrate highly site-selective hydrogenation of poly-enols with an encapsulated Rh catalyst, attaining site-selectivity in the presence of multiple reactive sites.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Cram, D. J., Tanner, M. E. & Thomas, R. The taming of cyclobutadiene. Angew. Chem. Int. Ed. 30, 1024–1027 (1991).

    Google Scholar 

  95. 95.

    Mansour, A. T. et al. β-cyclodextrin-mediated enantioselective photochemical electrocyclization of 1,3-dihydro-2H-azepin-2-one. J. Org. Chem. 82, 9832–9836 (2017).

    CAS  PubMed  Google Scholar 

  96. 96.

    Nakamura, A. & Inoue, Y. Supramolecular catalysis of the enantiodifferentiating [4 + 4] photocyclodimerization of 2-anthracenecarboxylate by γ-cyclodextrin. J. Am. Chem. Soc. 125, 966–972 (2003).

    CAS  PubMed  Google Scholar 

  97. 97.

    Rao, M. et al. Photocatalytic supramolecular enantiodifferentiating dimerization of 2-anthracenecarboxylic acid through triplet–triplet annihilation. Org. Lett. 20, 1680–1683 (2018).

    CAS  PubMed  Google Scholar 

  98. 98.

    Wei, X. et al. Supramolecular photochirogenesis driven by higher-order complexation: enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate to slipped cyclodimers via a 2:2 complex with β-cyclodextrin. J. Am. Chem. Soc. 140, 3959–3974 (2018).

    CAS  PubMed  Google Scholar 

  99. 99.

    Ji, J. et al. An ultimate stereocontrol in supramolecular photochirogenesis: photocyclodimerization of 2-anthracenecarboxylate mediated by sulfur-linked β-cyclodextrin dimers. J. Am. Chem. Soc. 141, 9225–9238 (2019). Yang and co-workers achieve up to 100% enantiomeric excess in photochemical anthracene dimerization using a sulfur-linked cyclodextrin dimer capsule.

    PubMed  Google Scholar 

  100. 100.

    Wei, X. et al. Reversal of regioselectivity during photodimerization of 2-anthracenecarboxylic acid in a water-soluble organic cavitand. Org. Lett. 21, 7868–7872 (2019).

    CAS  PubMed  Google Scholar 

  101. 101.

    Dalton, D. M. et al. Supramolecular Ga4L612– cage photosensitizes 1,3-rearrangement of encapsulated guest via photoinduced electron transfer. J. Am. Chem. Soc. 137, 10128–10131 (2015).

    CAS  PubMed  Google Scholar 

  102. 102.

    Cullen, W., Takezawa, H. & Fujita, M. Demethylenation of cyclopropanes via photoinduced guest-to-host electron transfer in an M6L4 cage. Angew. Chem. Int. Ed. 58, 9171–9173 (2019).

    CAS  Google Scholar 

  103. 103.

    Yoshizawa, M., Miyagi, S., Kawano, M., Ishiguro, K. & Fujita, M. Alkane oxidation via photochemical excitation of a self-assembled molecular cage. J. Am. Chem. Soc. 126, 9172–9173 (2004).

    CAS  PubMed  Google Scholar 

  104. 104.

    Furutani, Y. et al. In situ spectroscopic, electrochemical, and theoretical studies of the photoinduced host–guest electron transfer that precedes unusual host-mediated alkane photooxidation. J. Am. Chem. Soc. 131, 4764–4768 (2009).

    CAS  PubMed  Google Scholar 

  105. 105.

    Das, A., Mandal, I., Venkatramani, R. & Dasgupta, J. Ultrafast photoactivation of CH bonds inside water-soluble nanocages. Sci. Adv. 5, eaav4806 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Guo, J. et al. Regio- and Enantioselective photodimerization within the confined space of a homochiral ruthenium/palladium heterometallic coordination cage. Angew. Chem. Int. Ed. 56, 3852–3856 (2017).

    CAS  Google Scholar 

  107. 107.

    Jongkind, L. J., Caumes, X., Hartendorp, A. P. T. & Reek, J. N. H. Ligand template strategies for catalyst encapsulation. Acc. Chem. Res. 51, 2115–2128 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Li, R. J., Holstein, J. J., Hiller, W. G., Andréasson, J. & Clever, G. H. mechanistic interplay between light switching and guest binding in photochromic [Pd2dithienylethene4] coordination cages. J. Am. Chem. Soc. 141, 2097–2103 (2019).

    CAS  PubMed  Google Scholar 

  109. 109.

    Jia, F. et al. Redox-responsive host–guest chemistry of a flexible cage with naphthalene walls. J. Am. Chem. Soc. 142, 3306–3310 (2020).

    CAS  PubMed  Google Scholar 

  110. 110.

    Spicer, R. L. et al. Host–guest-induced electron transfer triggers radical-cation catalysis. J. Am. Chem. Soc. 142, 2134–2139 (2020).

    CAS  PubMed  Google Scholar 

  111. 111.

    Vaissier Welborn, V. & Head-Gordon, T. Electrostatics generated by a supramolecular capsule stabilizes the transition state for carbon–carbon reductive elimination from gold(iii) Complex. J. Phys. Chem. Lett. 9, 3814–3818 (2018).

    CAS  PubMed  Google Scholar 

  112. 112.

    Ujaque, G., Maréchal, J. D. & Norjmaa, G. Reaction rate inside the cavity of [Ga4L6]12− supramolecular metallocage is regulated by the encapsulated solvent. Chem. Eur. J. 26, 1–6 (2020).

    Google Scholar 

  113. 113.

    Norjmaa, G., Maréchal, J. D. & Ujaque, G. Microsolvation and encapsulation effects on supramolecular catalysis: C–C reductive elimination inside [Ga4L6]12– metallocage. J. Am. Chem. Soc. 141, 13114–13123 (2019).

    CAS  PubMed  Google Scholar 

  114. 114.

    Young, T. A., Martí-Centelles, V., Wang, J., Lusby, P. J. & Duarte, F. Rationalizing the activity of an ‘artificial Diels–Alderase’: establishing efficient and accurate protocols for calculating supramolecular catalysis. J. Am. Chem. Soc. 142, 1300–1310 (2020).

    PubMed  Google Scholar 

  115. 115.

    Petroselli, M. et al. Radical reactions in cavitands unveil the effects of affinity on dynamic supramolecular systems. J. Am. Chem. Soc. 142, 2396–2403 (2020).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the director, Office of Science, Office of Basic Energy Sciences, and the Division of Chemical Sciences, Geosciences, and Bioscience of the U.S. Department of Energy at Lawrence Berkeley National Laboratory (Grant DE-AC02-05CH1123).

Author information

Affiliations

Authors

Contributions

M.M., S.M.B., and K.T.X. contributed equally. M.M., S.M.B., K.T.X., R.G.B, K.N.R. and F.D.T. were involved in surveying the literature and structuring and editing the manuscript.

Corresponding author

Correspondence to F. Dean Toste.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morimoto, M., Bierschenk, S.M., Xia, K.T. et al. Advances in supramolecular host-mediated reactivity. Nat Catal 3, 969–984 (2020). https://doi.org/10.1038/s41929-020-00528-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing