Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Band structure engineering and defect control of Ta3N5 for efficient photoelectrochemical water oxidation

Abstract

Ta3N5 is a promising photoanode material with a theoretical maximum solar conversion efficiency of 15.9% for photoelectrochemical water splitting. However, the highest applied bias photon-to-current efficiency achieved so far is only 2.72%. To bridge the efficiency gap, effective carrier management strategies for Ta3N5 photoanodes should be developed. Here, we propose to use gradient Mg doping for band structure engineering and defect control of Ta3N5. The gradient Mg doping profile in Ta3N5 induces a gradient of the band edge energetics, which greatly enhances the charge separation efficiency. Furthermore, defect-related recombination is significantly suppressed due to the passivation effect of Mg dopants on deep-level defects and, more importantly, the matching of the gradient Mg doping profile with the distribution of defects within Ta3N5. As a result, a photoanode based on the gradient Mg-doped Ta3N5 delivers a low onset potential of 0.4 V versus that of a reversible hydrogen electrode and a high applied bias photon-to-current efficiency of 3.25 ± 0.05%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of homogeneous Mg doping on the defect properties of Ta3N5.
Fig. 2: Effect of homogeneous Mg doping on the PEC performance and band edge energetics of Ta3N5.
Fig. 3: Energy band diagrams.
Fig. 4: Effect of gradient Mg doping on the defect properties of Ta3N5.
Fig. 5: Electron microscopic characterizations of NiCoFe-Bi/gradient-Mg:Ta3N5/Nb photoanode.
Fig. 6: Solar-driven PEC water oxidation properties.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on request. Source data are provided with this paper.

References

  1. Lewis, N. S. Toward cost-effective solar energy use. Science 315, 798–801 (2007).

    CAS  PubMed  Google Scholar 

  2. Listorti, A., Durrant, J. & Barber, J. Artificial photosynthesis: solar to fuel. Nat. Mater. 8, 929–930 (2009).

    CAS  PubMed  Google Scholar 

  3. Hammarstrom, L. & Hammes-Schiffer, S. Artificial photosynthesis and solar fuels. Acc. Chem. Res. 42, 1859–1860 (2009).

    CAS  PubMed  Google Scholar 

  4. Bard, A. J. & Fox, M. A. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995).

    CAS  Google Scholar 

  5. Tachibana, Y., Vayssieres, L. & Durrant, J. Artificial photosynthesis for solar water-splitting. Nat. Photon. 6, 511–518 (2012).

    CAS  Google Scholar 

  6. House, R. L. et al. Artificial photosynthesis: where are we now? Where can we go? J. Photochem. Photobiol. C 25, 32–45 (2015).

    CAS  Google Scholar 

  7. Hisatomi, T., Kubota, J. & Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014).

    CAS  Google Scholar 

  8. Ran, J. et al. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 43, 7787–7812 (2014).

    CAS  PubMed  Google Scholar 

  9. Hu, S. et al. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 2984–2993 (2013).

    CAS  Google Scholar 

  10. Döscher, H., Geisz, J. F., Deutsch, T. G. & Turner, J. A. Sunlight absorption in water-efficiency and design implications for photoelectrochemical devices. Energy Environ. Sci. 7, 2951–2956 (2014).

    Google Scholar 

  11. Li, Y. et al. Vertically aligned Ta3N5 nanorod arrays for solar‐driven photoelectrochemical water splitting. Adv. Mater. 25, 125–131 (2013).

    CAS  PubMed  Google Scholar 

  12. Li, Y. et al. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Nat. Commun. 4, 2566 (2013).

    PubMed  Google Scholar 

  13. Liu, G. et al. Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting. Energy Environ. Sci. 9, 1327–1334 (2016).

    CAS  Google Scholar 

  14. Pihosh, Y. et al. Ta3N5-nanorods enabling highly efficient water oxidation via advantageous light harvesting and charge collection. Energy Environ. Sci. 13, 1519–1530 (2020).

    Google Scholar 

  15. Hitoki, G. et al. Ta3N5 as a novel visible light-driven photocatalyst (λ<600 nm). Chem. Lett. 31, 736–737 (2002).

    Google Scholar 

  16. Chun, W.-J. et al. Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J. Phys. Chem. B 107, 1798–1803 (2003).

    CAS  Google Scholar 

  17. Ding, C., Shi, J., Wang, Z. & Li, C. Photoelectrocatalytic water splitting: significance of cocatalysts, electrolyte, and interfaces. ACS Catal. 7, 675–688 (2016).

    Google Scholar 

  18. He, Y. et al. What limits the performance of Ta3N5 for solar water splitting? Chem 1, 640–655 (2016).

    CAS  Google Scholar 

  19. Wang, Z. et al. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat. Catal. 1, 756–763 (2018).

    Google Scholar 

  20. Seo, J., Nishiyama, H., Yamada, T. & Domen, K. Visible‐light‐responsive photoanodes for highly active, stable water oxidation. Angew. Chem. Int. Ed. 57, 8396–8415 (2018).

    CAS  Google Scholar 

  21. Seo, J. et al. Mg-Zr cosubstituted Ta3N5 photoanode for lower-onset-potential solar-driven photoelectrochemical water splitting. J. Am. Chem. Soc. 137, 12780–12783 (2015).

    CAS  PubMed  Google Scholar 

  22. Pei, L. et al. Oriented growth of Sc-doped Ta3N5 nanorod photoanode achieving low-onset-potential for photoelectrochemical water oxidation. ACS Appl. Energy Mater. 1, 4150–4157 (2018).

    CAS  Google Scholar 

  23. Boettcher, S. W. et al. Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 133, 1216–1219 (2011).

    CAS  PubMed  Google Scholar 

  24. Lin, Y. et al. Growth of p-type hematite by atomic layer deposition and its utilization for improved solar water splitting. J. Am. Chem. Soc. 134, 5508–5511 (2012).

    CAS  PubMed  Google Scholar 

  25. Abdi, F. F. et al. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4, 2195 (2013).

    PubMed  Google Scholar 

  26. Xie, Y., Wang, Y., Chen, Z. & Xu, X. Role of oxygen defects on the photocatalytic properties of Mg‐doped mesoporous Ta3N5. ChemSusChem 9, 1403–1412 (2016).

    CAS  PubMed  Google Scholar 

  27. Fukasawa, Y. et al. Synthesis of ordered porous graphitic‐C3N4 and regularly arranged Ta3N5 nanoparticles by using self‐assembled silica nanospheres as a primary template. Chem. Asian J. 6, 103–109 (2011).

    CAS  PubMed  Google Scholar 

  28. Li, W.-K., Zhou, G.-D., Mak, T. C. W. & Mak, T. Advanced Structural Inorganic Chemistry (Oxford Univ. Press, 2008).

  29. Fu, G., Yan, S., Yu, T. & Zou, Z. Oxygen related recombination defects in Ta3N5 water splitting photoanode. Appl. Phys. Lett. 107, 171902 (2015).

    Google Scholar 

  30. Cui, L., Wang, M. & Wang, Y. X. Nitrogen vacancies and oxygen substitution of Ta3N5: first-principles investigation. J. Phys. Soc. Jpn 83, 114707 (2014).

    Google Scholar 

  31. Jing, T., Dai, Y., Ma, X., Wei, W. & Huang, B. Effects of intrinsic defects and extrinsic doping on the electronic and photocatalytic properties of Ta3N5. RSC Adv. 5, 59390–59397 (2015).

    CAS  Google Scholar 

  32. Harb, M. et al. Tuning the properties of visible-light-responsive tantalum (oxy) nitride photocatalysts by non-stoichiometric compositions: a first-principles viewpoint. Phys. Chem. Chem. Phys. 16, 20548–20560 (2014).

    CAS  PubMed  Google Scholar 

  33. Daryakenari, A. A. et al. Ethanol electro-oxidation on nanoworm-shaped Pd particles supported by nanographitic layers fabricated by electrophoretic deposition. RSC Adv. 5, 52578–52587 (2015).

    CAS  Google Scholar 

  34. Zimin, P. A., Kazanskii, L. P., Kleshnina, S. I. & Persiantseva, V. P. X-ray photoelectron spectroscopy of corrosion inhibitors on metal surfaces 1. Adsorption of chromates on magnesium alloys. Russ. Chem. Bull. 32, 876–880 (1983).

    Google Scholar 

  35. Arranz, A. & Palacio, C. Composition of tantalum nitride thin films grown by low-energy nitrogen implantation: a factor analysis study of the Ta 4f XPS core level. Appl. Phys. A 81, 1405–1410 (2005).

    CAS  Google Scholar 

  36. Scandurra, A. et al. Tantalum nitride thin film resistors by low temperature reactive sputtering for plastic electronics. Surf. Interface Anal. 40, 758–762 (2008).

    CAS  Google Scholar 

  37. Hara, M. et al. Ta3N5 and TaON thin films on Ta foil: surface composition and stability. J. Phys. Chem. B 107, 13441–13445 (2003).

    CAS  Google Scholar 

  38. Yang, X. et al. Tantalum nitride electron‐selective contact for crystalline silicon solar cells. Adv. Energy Mater. 8, 1800608 (2018).

    Google Scholar 

  39. Bartesaghi, D. et al. Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nat. Commun. 6, 7083 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nogami, G. Theory of capacitance-voltage characteristics of semiconductor electrodes with interface states. J. Electrochem. Soc. 133, 525–531 (1986).

    CAS  Google Scholar 

  41. Takata, T. et al. Visible-light-driven photocatalytic behavior of tantalum-oxynitride and nitride. Res. Chem. Intermed. 33, 13–25 (2007).

    CAS  Google Scholar 

  42. Liu, C. et al. Investigation of high performance TiO2 nanorod array perovskite solar cells. J. Mater. Chem. A 5, 15970–15980 (2017).

    CAS  Google Scholar 

  43. Cheng, Y. et al. The detrimental effect of excess mobile ions in planar CH3NH3PbI3 perovskite solar cells. J. Mater. Chem. A 4, 12748–12755 (2016).

    CAS  Google Scholar 

  44. Tan, H. L., Wen, X., Amal, R. & Ng, Y. H. BiVO4 {010} and {110} relative exposure extent: governing factor of surface charge population and photocatalytic activity. J. Phys. Chem. Lett. 7, 1400–1405 (2016).

    CAS  PubMed  Google Scholar 

  45. Kim, J. K. et al. Enhancing Mo:BiVO4 solar water splitting with patterned Au nanospheres by plasmon‐induced energy transfer. Adv. Energy Mater. 8, 1701765 (2018).

    Google Scholar 

  46. Wang, C. et al. Effects of interfacial layers on the photoelectrochemical properties of tantalum nitride photoanodes for solar water splitting. J. Mater. Chem. A 4, 13837–13843 (2016).

    CAS  Google Scholar 

  47. Yang, M., MacLeod, M. J., Tessier, F. & DiSalvo, F. J. Mesoporous metal nitride materials prepared from bulk oxides. J. Am. Ceram. Soc. 95, 3084–3089 (2012).

    CAS  Google Scholar 

  48. Guo, X., Wang, L. & Tan, Y. Hematite nanorods Co-doped with Ru cations with different valence states as high performance photoanodes for water splitting. Nano Energy 16, 320–328 (2015).

    CAS  Google Scholar 

  49. Ye, K.-H.et al. Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering. Nat. Commun. 10, 3687 (2019)..

  50. Luo, Z. et al. Multifunctional nickel film protected n‐type silicon photoanode with high photovoltage for efficient and stable oxygen evolution reaction. Small Methods 3, 1900212 (2019).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 21872019) and Sichuan Science and Technology Foundation (no. 2018JY0137). I.D.S. acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC 2089/1 —90776260. M.N., N.S. and K.D. acknowledge the Artificial Photosynthesis Project (ARPChem) of the New Energy and Industrial Technology Development Organization (NEDO) and ‘Nanotechnology Platform’ of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and Y.X. proposed the project and designed the experiments. Y.L., K.D. and I.D.S. supervised the project. Y.X. carried out the materials synthesis, PL characterizations, device fabrication, PEC tests and gas chromatography measurements with assistance from C.F. and J.F.; F.W., C.L., V.F.K. and C.-M.J. carried out the SEM, XPS and PDS measurements. M.N. and N.S. carried out the STEM, HRTEM and EDS measurements. Y.L., I.D.S., KD. and Y.X. analysed the data and wrote the manuscript. All authors discussed, commented on and revised the manuscript.

Corresponding authors

Correspondence to Kazunari Domen or Yanbo Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28 and Tables 1–2.

Source data

Source Data Fig. 1

X-ray diffraction, PL and XPS source data.

Source Data Fig. 2

JV curve, Mott–Schottky plot, Tauc plot and UPS source data.

Source Data Fig. 4

PL, PDS and TRPL source data.

Source Data Fig. 6

JV curve, J–time curve, ABPE curve, IPCE and gas chromatography source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Feng, C., Fu, J. et al. Band structure engineering and defect control of Ta3N5 for efficient photoelectrochemical water oxidation. Nat Catal 3, 932–940 (2020). https://doi.org/10.1038/s41929-020-00522-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-00522-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing