Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalytic upcycling of high-density polyethylene via a processive mechanism

Abstract

The overconsumption of single-use plastics is creating a global waste catastrophe, with widespread environmental, economic and health-related consequences. Here we show that the benefits of processive enzyme-catalysed conversions of biomacromolecules can be leveraged to affect the selective hydrogenolysis of high-density polyethylene into a narrow distribution of diesel and lubricant-range alkanes using an ordered, mesoporous shell/active site/core catalyst architecture that incorporates catalytic platinum sites at the base of the mesopores. Solid-state nuclear magnetic resonance revealed that long hydrocarbon macromolecules readily move within the pores of this catalyst, with a subsequent escape being inhibited by polymer–surface interactions, a behaviour that resembles the binding and translocation of macromolecules in the catalytic cleft of processive enzymes. Accordingly, the hydrogenolysis of polyethylene with this catalyst proceeds processively to yield a reliable, narrow and tunable stream of alkane products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Processive deconstruction of macromolecules.
Fig. 2: 13C NMR spectroscopy of polyethylene on silica surfaces.
Fig. 3: Dynamics of polyethylene threading through a mesopore.
Fig. 4: Electron microscopy of the mSiO2/Pt/SiO2 catalyst.
Fig. 5: Hydrogenolysis results from the mSiO2/Pt/SiO2 and Pt/SiO2 catalysts.
Fig. 6: Pore-diameter-dependent product distribution of polyethylene deconstructions.

Similar content being viewed by others

Data availability

Transmission electron microscopy, powder X-ray diffraction data and N2 sorption isotherms acquired to characterize inorganic materials, atomic coordinations from density functional theory calculations, NMR spectra and chromatography data that support the findings of this study are available in DataShare53 with the identifier https://doi.org/10.25380/iastate.12685775.

References

  1. Cornell, D. D. Plastics recycling: an overview. ACS Symp. Ser. 609, 72–79 (1995).

    CAS  Google Scholar 

  2. Hopewell, J., Dvorak, R. & Kosior, E. Plastics recycling: challenges and opportunities. Phil. Trans. R. Soc. B 364, 2115–2126 (2009).

    CAS  PubMed  Google Scholar 

  3. Garcia, J. M. Catalyst: design challenges for the future of plastics recycling. Chem. 1, 813–819 (2016).

    CAS  Google Scholar 

  4. Vollmer, I. et al. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59, 15402–15423 (2020).

    CAS  Google Scholar 

  5. Boaen, N. K. & Hillmyer, M. A. Post-polymerization functionalization of polyolefins. Chem. Soc. Rev. 34, 267–275 (2005).

    CAS  PubMed  Google Scholar 

  6. Pol, V. G. Upcycling: converting waste plastics into paramagnetic, conducting, solid, pure carbon microspheres. Environ. Sci. Technol. 44, 4753–4759 (2010).

    CAS  PubMed  Google Scholar 

  7. Wu, C., Nahil, M. A., Miskolczi, N., Huang, J. & Williams, P. T. Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes. Environ. Sci. Technol. 48, 819–826 (2014).

    CAS  PubMed  Google Scholar 

  8. Fonseca, W. S., Meng, X. & Sheng, D. Trash to treasure: transforming waste polystyrene cups into negative electrode materials for sodium ion batteries. ACS Sustainable Chem. Eng. 3, 2153–2159 (2015).

    CAS  Google Scholar 

  9. Geiselhart, C. M., Offenloch, J. T., Mutlu, H. & Barner-Kowollik, C. Polybutadiene functionalization via an efficient avenue. ACS Macro Lett. 5, 1146–1151 (2016).

    CAS  Google Scholar 

  10. Easterling, C. P., Kubo, T., Orr, Z. M., Fanucci, G. E. & Sumerlin, B. S. Synthetic upcycling of polyacrylates through organocatalyzed post-polymerization modification. Chem. Sci. 8, 7705–7709 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bäckström, E., Odelius, K. & Hakkarainen, M. Trash to treasure: microwave-assisted conversion of polyethylene to functional chemicals. Int. Eng. Chem. Res. 56, 14814–14821 (2017).

    Google Scholar 

  12. Okan, M., Aydin, H. M. & Barsbay, M. Current approaches to waste polymer utilization and minimization: a review. J. Chem. Technol. Biotechnol. 94, 8–21 (2019).

    CAS  Google Scholar 

  13. Bunescu, A., Lee, S., Li, Q. & Hartwig, J. F. Catalytic hydroxylation of polyethylenes. ACS Cent. Sci. 3, 895–903 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bae, C. et al. Regiospecific side‐chain functionalization of linear low‐density polyethylene with polar groups. Angew. Chem. Int. Ed. 44, 6410–6413 (2005).

    CAS  Google Scholar 

  15. Jia, X., Qin, C., Friedberger, T., Guan, Z. & Huang, Z. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions. Sci. Adv. 2, e1501591 (2016).

    PubMed  PubMed Central  Google Scholar 

  16. Dufaud, V. & Basset, J. –M. Catalytic hydrogenolysis at low temperature and pressure of polyethylene and polypropylene to diesels or lower alkanes by a zirconium hydride supported on silica–alumina: a step toward polyolefin degradation by the microscopic reverse of Ziegler–Natta polymerization. Angew. Chem. Int. Ed. 37, 806–810 (1998).

    CAS  Google Scholar 

  17. Gokhan, C. et al. Upcycling single-use polyethylene into high-quality liquid products. ACS Cent. Sci. 5, 1795–1803 (2019).

    Google Scholar 

  18. Suno, R. et al. Structure of the whole cytosolic region of ATP-dependant protease FtsH. Mol. Cell 22, 575–585 (2006).

    CAS  PubMed  Google Scholar 

  19. Mastny, M. et al. CtpB assembles a gated protease tunnel regulating cell–cell signaling during spore formation in Bacillus subtilis. Cell. 155, 647–658 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Divne, C. et al. The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265, 524–528 (1994).

    CAS  Google Scholar 

  21. Rouvinen, T., Bergfors, T., Teeri, T., Knowles, J. K. C. & Jones, T. A. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249, 380–386 (1990).

    CAS  PubMed  Google Scholar 

  22. Austin, H. P. et al. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl Acad. Sci. USA 115, E4350–E4357 (2018).

    CAS  Google Scholar 

  23. Han, X. et al. Structural insight into catalytic mechanism of PET hydrolase. Nat. Commun. 8, 2106 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. Joo, S. et al. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat. Commun. 9, 382 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. Payne, C. M. et al. Fungal cellulases. Chem. Rev. 115, 1308–1448 (2015).

    CAS  PubMed  Google Scholar 

  26. Breyer, W. A. & Matthews, B. W. A structural basis for processivity. Protein Sci. 10, 1699–1711 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Odian, G. G. Principles of Polymerization 4th edn (Wiley, 2004).

  28. Inoue, D., Kurosu, H., Chen, Q. & Ando, I. Structural and dynamical studies of 13C-labeled polyethylene adsorbed on the surface of silica gel by high-resolution solid-state 13C NMR spectroscopy. Acta Polymer. 46, 420–423 (1995).

    CAS  Google Scholar 

  29. Tonelli, A. E. & Schilling, F. C. Calculated carbon-13 nuclear magnetic resonance chemical shifts for ethylene–vinyl chloride copolymers. Macromolecules 14, 74–76 (1981).

    CAS  Google Scholar 

  30. Tonelli, A. E. & Schilling, F. C. 13C NMR chemical shifts and the microstructure of polymers. Acc. Chem. Res. 14, 233–238 (1981).

    CAS  Google Scholar 

  31. Gao, W. & Reven, L. Solid-state NMR studies of self-assembled monolayers. Langmuir 11, 1860–1863 (1995).

    CAS  Google Scholar 

  32. Schmidt-Rohr, K. & Spiess, H. W. Chain diffusion between crystallized and amorphous regions in polyethylene detected by 2D exchange 13C NMR. Macromolecules 24, 5288–5293 (1991).

    CAS  Google Scholar 

  33. Frisch, H. L. & Mark, J. E. Nanocomposites prepared by threading polymer chains through zeolites, mesoporous silica, or silica nanotubes. Chem. Mater. 8, 1735–1738 (1996).

    CAS  Google Scholar 

  34. Duan, P. et al. Polymer infiltration into metal–organic frameworks in mixed-matrix membranes detected in situ by NMR. J. Am. Chem. Soc. 141, 7589–7595 (2019).

    CAS  PubMed  Google Scholar 

  35. Lin, V. S.-Y. et al. Oxidative polymerization of 1,4-diethynylbenzene into highly conjugated poly(phenylene butadiynylene) within the channels of surface-functionalized mesoporous silica and alumina materials. J. Am. Chem. Soc. 124, 9040–9041 (2002).

    CAS  PubMed  Google Scholar 

  36. Blum, F. D., Xu, G., Liang, M. & Wade, C. G. Dynamics of poly(vinyl acetate) in bulk and on silica. Macromolecules 29, 8740–8745 (1996).

    CAS  Google Scholar 

  37. Lin, W.-Y. & Blum, F. D. Segmental dynamics of bulk and adsorbed poly(methyl acrylate)-d3 by deuterium NMR: effect of adsorbed amount. Macromolecules 30, 5331–5338 (1997).

    CAS  Google Scholar 

  38. Bax, A., Freeman, R. & Kempsell, S. P. Natural abundance 13C–13C coupling observed via double-quantum coherence. J. Am. Chem. Soc. 102, 4849–4851 (1980).

    CAS  Google Scholar 

  39. Lesage, A., Auger, C., Caldarelli, S. & Emsley, L. Determination of through-bond carbon–carbon connectivities in solid-state NMR using the INADEQUATE experiment. J. Am. Chem. Soc. 119, 7867–7868 (1997).

    CAS  Google Scholar 

  40. Earl, W. L. & VanderHart, D. L. Observations in solid polyethylenes by carbon-13 nuclear magnetic resonance with magic angle sample spinning. Macromolecules 12, 763–767 (1979).

    Google Scholar 

  41. Kitamaru, R., Horii, F. & Murayama, K. Phase structure of lamellar crystalline polyethylene by solid-state high-resolution 13C NMR: detection of the crystalline–amorphous interphase. Macromolecules 19, 637–643 (1986).

    Google Scholar 

  42. Pearson, D. S., Ver Strate, G., von Meerwall, E. & Schilling, F. C. Viscosity and self-diffusion coefficient of linear polyethylene. Macromolecules 20, 1133–1141 (1987).

    CAS  Google Scholar 

  43. Flaherty, D. W. & Iglesia, E. Transition-state enthalpy and entropy effects on reactivity and selectivity in hydrogenolysis of n-alkanes. J. Am. Chem. Soc. 135, 18586–18599 (2013).

    CAS  PubMed  Google Scholar 

  44. Xiao, C. X. et al. High-temperature-stable and regenerable catalysts: platinum nanoparticles in aligned mesoporous silica wells. ChemSusChem 6, 1915–1922 (2013).

    CAS  PubMed  Google Scholar 

  45. Dong, B. et al. In situ quantitative single-molecule study of dynamic catalytic processes in nanoconfinement. Nat. Catal. 1, 135–140 (2018).

    Google Scholar 

  46. Burange, A. S., Gawande, M. B., Lam, F. L. Y., Jayaram, R. V. & Luque, R. Heterogeneously catalyzed strategies for the deconstruction of high density polyethylene: plastic waste valorisation to fuels. Green Chem. 17, 146–156 (2015).

    CAS  Google Scholar 

  47. Liu, F. et al. A comparison of NiMo/Al2O3 catalysts prepared by impregnation and coprecipitation methods for hydrodesulfurization of dibenzothiophene. J. Phys. Chem. C 111, 7396–7402 (2007).

    CAS  Google Scholar 

  48. Speight, J. G. Handbook of Petroleum Product Analysis 2nd edn 1–25 (Wiley, 2014).

  49. Deng, Y. et al. Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system. J. Am. Chem. Soc. 132, 8466–8473 (2010).

    CAS  PubMed  Google Scholar 

  50. Harris, R. K. et al. Further conventions for NMR shielding and chemical shifts. Pure Appl. Chem. 80, 59–84 (2008).

    CAS  Google Scholar 

  51. Bielecki, A. & Burum, D. P. Temperature dependence of 207Pb MAS spectra of solid lead nitrate. An accurate, sensitive thermometer for variable-temperature MAS. J. Magn. Reson. A 116, 215–220 (1995).

    CAS  Google Scholar 

  52. Wang, F. C.-Y. & Zhang, L. Chemical composition of group II lubricant oil studied by high-resolution gas chromatography and comprehensive two-dimensional gas chromatography. Energy Fuels 21, 3477–3483 (2007).

    CAS  Google Scholar 

  53. Tennakoon, A. et al. Data from ‘Catalytic Upcycling of High Density Polyethylene via a Processive Mechanism’ (DataShare Repository, Iowa State University); https://doi.org/10.25380/iastate.12685775

  54. Maricq, M. M. & Waugh, J. S. NMR in rotating solids. J. Chem. Phys. 70, 3300–3316 (1979).

    CAS  Google Scholar 

Download references

Acknowledgements

This research is sponsored by the Catalysis for Polymer Upcycling, a project funded by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract Numbers DE-AC-02-07CH11358 (Ames Laboratory) and DE-AC-02- 06CH11357 (Argonne National Laboratory). The authors thank the members of the Catalysis for Polymer Upcycling team, in particular S. Han, T. Keller, K. Poeppelmeier and R. Kennedy for numerous fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

F.A.P. and A.L.P. conducted the SSNMR experiments under the direction of F.A.P., using *PE prepared and adsorbed onto mSiO2 by S.P. with guidance from G.W.C., A.M.L. and A.D.S. Silica materials and catalysts were prepared by X.W. and Y.P., under the direction of W.H. and I.I.S. A.T. performed the catalytic tests, under the direction of A.D.S. GPC experiments were performed by A.M.L. Product analysis was performed by A.T., R.A.H. and M.D. Signatures of processivity were proposed by B.P. Density functional theory calculations were performed by S.C.A. and A.H. F.A.P., W.H. and A.D.S. composed the manuscript with contributions from all the other co-authors.

Corresponding authors

Correspondence to Wenyu Huang, Aaron D. Sadow or Frédéric A. Perras.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Tables 1–11 (N2 sorption, GPC data and GC data), discussion, Figs. (1–112) and references.

Supplementary Data

XYZ coordinates of optimized DFT structures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tennakoon, A., Wu, X., Paterson, A.L. et al. Catalytic upcycling of high-density polyethylene via a processive mechanism. Nat Catal 3, 893–901 (2020). https://doi.org/10.1038/s41929-020-00519-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-00519-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing