Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chiral paddle-wheel diruthenium complexes for asymmetric catalysis


The development of robust and reactive chiral catalysts is a fundamental aim in asymmetric catalysis, and crucial for providing efficient methods for synthesizing chiral molecules. Chiral paddle-wheel bimetallic complexes provide a highly tunable chiral environment in rhodium-catalysed asymmetric carbene/nitrene transfer reactions and Lewis acid-catalysed reactions. Chiral paddle-wheel complexes having other transition metals as the reactive metal centre, however, have not yet been identified in asymmetric catalysis. Here, we report the synthesis, structures and high catalytic performances of chiral paddle-wheel diruthenium complexes. The cationic chiral diruthenium complex [Ru2((S)-BPTPI)4]+ exhibited remarkable reactivity as a Lewis acid catalyst for asymmetric hetero-Diels–Alder reactions, achieving a turnover number of up to 1,880,000 with high enantioselectivity (>90% e.e.). The chiral diruthenium complexes also exhibited good reactivity and high enantioselectivity in C–H amination and cyclopropanation reactions under oxidizing conditions, indicating their high tolerance towards oxidation. Our results reveal the chiral paddle-wheel diruthenium scaffold as a promising platform for asymmetric catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Asymmetric catalysis using chiral paddle-wheel bimetallic complexes.
Fig. 2: Synthesis and structures of chiral paddle-wheel diruthenium complexes.
Fig. 3: Catalytic asymmetric HDA reactions with low catalyst loading.
Fig. 4: Catalytic asymmetric reactions using chiral diruthenium complexes under oxidizing conditions.
Fig. 5: Cyclic voltammograms of the chiral dirhodium and diruthenium complexes.

Data availability

Experimental procedures and characterization data for the catalysts and the synthesized compounds are included in the Supplementary Information. Crystallographic data are available from the Cambridge Crystallographic Data Centre with the following codes: 1-ClO4 (CCDC 1982959), 2-Cl (CCDC 1983066), [Rh2((S)-BPTPI)4] (CCDC 1982958) and 7d (CCDC 1982956). Other data are available from the corresponding authors upon request.


  1. Trost, B. M. The atom economy—a search for synthetic efficiency. Science 254, 1471–1477 (1991).

    CAS  PubMed  Google Scholar 

  2. Müller, P. & Fruit, C. Enantioselective catalytic aziridinations and asymmetric nitrene insertions into C–H bonds. Chem. Rev. 103, 2905–2920 (2003).

    PubMed  Google Scholar 

  3. Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hansen, J. & Davies, H. M. L. High symmetry dirhodium(ii) paddlewheel complexes as chiral catalysts. Coord. Chem. Rev. 252, 545–555 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Du Bois, J. Rhodium-catalyzed C–H amination. An enabling method for chemical synthesis. Org. Process Res. Dev. 15, 758–762 (2011).

    PubMed  PubMed Central  Google Scholar 

  6. Roizen, J. L., Harvey, M. E. & Du Bois, J. Metal-catalyzed nitrogen-atom transfer methods for the oxidation of aliphatic C–H bonds. Acc. Chem. Res. 45, 911–922 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Deng, Y., Qiu, H., Srinivas, H. D. & Doyle, M. P. Chiral dirhodium(ii) catalysts for selective metal carbene reactions. Curr. Org. Chem. 20, 61–81 (2016).

    CAS  Google Scholar 

  8. Hansen, J., Li, B., Dikarev, E., Autschbach, J. & Davies, H. M. L. Combined experimental and computational studies of heterobimetallic Bi–Rh paddlewheel carboxylates as catalysts for metal carbenoid transformations. J. Org. Chem. 74, 6564–6571 (2009).

    CAS  PubMed  Google Scholar 

  9. Zhang, X., Xu, H., Liu, X., Phillips, D. L. & Zhao, C. Mechanistic insight into the intramolecular benzylic C–H nitrene insertion catalyzed by bimetallic paddlewheel complexes: Influence of the metal centers. Chem. Eur. J. 22, 7288–7297 (2016).

    CAS  PubMed  Google Scholar 

  10. Collins, L. R., van Gastel, M., Neese, F. & Fürstner, A. Enhanced electrophilicity of heterobimetallic Bi–Rh paddlewheel carbene complexes: a combined experimental, spectroscopic, and computational study. J. Am. Chem. Soc. 140, 13042–13055 (2018).

    CAS  Google Scholar 

  11. Ren, Z. et al. Comparison of reactivity and enantioselectivity between chiral bimetallic catalysts: bismuth–rhodium- and dirhodium-catalyzed carbene chemistry. ACS Catal. 8, 10676–10682 (2018).

    CAS  Google Scholar 

  12. Collins, L. R., Auris, S., Goddard, R. & Fürstner, A. Chiral heterobimetallic bismuth–rhodium paddlewheel catalysts: a conceptually new approach to asymmetric cyclopropanation. Angew. Chem. Int. Ed. 58, 3557–3561 (2019).

    CAS  Google Scholar 

  13. Stephenson, T. A. & Wilkinson, G. New ruthenium carboxylate complexes. J. Inorg. Nucl. Chem. 28, 2285–2291 (1966).

    CAS  Google Scholar 

  14. Aquino, M. A. S. Recent developments in the synthesis and properties of diruthenium tetracarboxylates. Coord. Chem. Rev. 248, 1025–1045 (2004).

    CAS  Google Scholar 

  15. Komiya, N., Nakae, T., Sato, H. & Naota, T. Water-soluble diruthenium complexes bearing acetate and carbonate bridges: highly efficient catalysts for aerobic oxidation of alcohols in water. Chem. Commun. 4829–4831 (2006).

  16. Murahashi, S.-I., Okano, Y., Sato, H., Nakae, T. & Komiya, N. Aerobic ruthenium-catalyzed oxidative transformation of secondary amines to imines. Synlett 11, 1675–1678 (2007).

    Google Scholar 

  17. Barker, J. E. & Ren, T. Diruthenium(II,III) bis(tetramethyl-1,3-benzenedipropionate) as a novel catalyst for tert-butyl hydroperoxide oxygenation. Inorg. Chem. 47, 2264–2266 (2008).

    CAS  PubMed  Google Scholar 

  18. Lee, H. B. & Ren, T. Aerobic oxygenation of organic sulfides using diruthenium activators. Inorg. Chim. Acta 362, 1467–1470 (2009).

    CAS  Google Scholar 

  19. Villalobos, L., Cao, Z., Fanwick, P. E. & Ren, T. Diruthenium(II,III) tetramidates as a new class of oxygenation catalysts. Dalton Trans. 41, 644–650 (2012).

    CAS  PubMed  Google Scholar 

  20. Thompson, D. J. et al. Diruthenium(II,III) tetracarboxylates catalyzed H2O2 oxygenation of organic sulfides. Inorg. Chim. Acta 424, 150–155 (2015).

    CAS  Google Scholar 

  21. Legzdins, P., Mitchell, R. W., Rempel, G. L., Ruddick, J. D. & Wilkinson, GThe protonation of ruthenium- and rhodium-bridged carboxylates and their use as homogeneous hydrogenation catalysts for unsaturated substances. J. Chem. Soc. A 3322–3326 (1970).

  22. Noels, A. F. et al. Competitive cyclopropanation and cross-metathesis reactions of alkenes catalyzed by diruthenium tetrakis carboxylates. J. Chem. Soc. Chem. Commun. 783–784 (1988).

  23. Demonceau, A., Noels, A. F., Saive, E. & Hubert, A. J. Ruthenium-catalysed ring-opening metathesis polymerization of cycloolefins initiated by diazoesters. J. Mol. Catal. 76, 123–132 (1992).

    CAS  Google Scholar 

  24. Harvey, M. E., Musaev, D. G. & Du Bois, J. A diruthenium catalyst for selective, intramolecular allylic C–H amination: reaction development and mechanistic insight gained through experiment and theory. J. Am. Chem. Soc. 133, 17207–17216 (2011).

    CAS  PubMed  Google Scholar 

  25. McCann, al. Preparation of transition metal complexes of bicyclo[2.2.1]hept-5-ene-2-carboxylic acid (C7H9CO2H) and X-ray crystal structure of [Cu2{(±)-endo-μ-O2CC7H9}4 (CH3OH)2]·2CH3OH. Polyhedron 16, 3399–3406 (1997).

    CAS  Google Scholar 

  26. Doyle, M. P., Phillips, I. M. & Hu, W. A new class of chiral Lewis acid catalysts for highly enantioselective hetero-Diels-Alder reactions: exceptionally high turnover numbers from dirhodium(ii) carboxamidates. J. Am. Chem. Soc. 123, 5366–5367 (2001).

    CAS  PubMed  Google Scholar 

  27. Anada, M. et al. A new dirhodium(ii) carboxamidate complex as a chiral Lewis acid catalyst for enantioselective hetero-Diels–Alder reactions. Angew. Chem. Int. Ed. 43, 2665–2668 (2004).

    CAS  Google Scholar 

  28. Pellissier, H. Asymmetric hetero-Diels-Alder reactions of carbonyl compounds. Tetrahedron 65, 2839–2877 (2009).

    CAS  Google Scholar 

  29. Taheri kal Koshvandi, A. & Heravi, M. M. Applications of Danishefsky’s dienes in asymmetric oxo-Diels-Alder reactions. Tetrahedron Asymm. 28, 1506–1556 (2017).

    CAS  Google Scholar 

  30. Pelphrey, P., Hansen, J. & Davies, H. M. L. Solvent-free catalytic enantioselective C–C bond forming reactions with very high catalyst turnover numbers. Chem. Sci. 1, 254–257 (2010).

    CAS  Google Scholar 

  31. Bae, H. Y. et al. Approaching sub-ppm-level asymmetric organocatalysis of a highly challenging and scalable carbon–carbon bond forming reaction. Nat. Chem. 10, 888–894 (2018).

    CAS  PubMed  Google Scholar 

  32. Yamawaki, M., Tsutsui, H., Kitagaki, S., Anada, M. & Hashimoto, S. Dirhodium(ii) tetrakis[N-tetrachlorophthaloyl-(S)-tert-leucinate]: a new chiral Rh(ii) catalyst for enantioselective amidation of C–H bonds. Tetrahedron Lett. 43, 9561–9564 (2002).

    CAS  Google Scholar 

  33. Fruit, C. & Müller, P. Intramolecular asymmetric amidations of sulfonamides and sulfamates catalyzed by chiral dirhodium(ii) complexes. Helv. Chim. Acta 87, 1607–1615 (2004).

    CAS  Google Scholar 

  34. Reddy, R. P. & Davies, H. M. L. Dirhodium tetracarboxylates derived from adamantylglycine as chiral catalysts for enantioselective C–H aminations. Org. Lett. 8, 5013–5016 (2006).

    CAS  PubMed  Google Scholar 

  35. Zalatan, D. N. & Du Bois, J. A chiral rhodium carboxamidate catalyst for enantioselective C–H amination. J. Am. Chem. Soc. 130, 9220–9221 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Höke, T., Herdtweck, E. & Bach, T. Hydrogen-bond mediated regio- and enantioselectivity in a C–H amination reaction catalysed by a supramolecular Rh(ii) complex. Chem. Commun. 49, 8009–8011 (2013).

    Google Scholar 

  37. Nasrallah, A. et al. Catalytic enantioselective intermolecular benzylic C(sp3)–H amination. Angew. Chem. Int. Ed. 58, 8192–8196 (2019).

    CAS  Google Scholar 

  38. Lebel, H., Marcoux, J.-F., Molinaro, C. & Charette, A. B. Stereoselective cyclopropanation reactions. Chem. Rev. 103, 977–1050 (2003).

    CAS  PubMed  Google Scholar 

  39. Bartoli, G., Bencivenni, G. & Dalpozzo, R. Asymmetric cyclopropanation reactions. Synthesis 46, 979–1029 (2014).

    Google Scholar 

  40. Müller, P. & Ghanem, A. Rh(ii)-catalyzed enantioselective cyclopropanation of olefins with dimethyl malonate via in situ generated phenyliodonium ylide. Org. Lett. 6, 4347–4350 (2004).

    PubMed  Google Scholar 

  41. Moreau, B. & Charette, A. B. Expedient synthesis of cyclopropane α-amino acids by the catalytic asymmetric cyclopropanation of alkenes using iodonium ylides derived from methyl nitroacetate. J. Am. Chem. Soc. 127, 18014–18015 (2005).

    CAS  PubMed  Google Scholar 

  42. Marcoux, D., Goudreau, S. R. & Charette, A. B. trans-Directing ability of the amide group: enabling the enantiocontrol in the synthesis of 1,1-dicarboxy cyclopropanes. Reaction development, scope, and synthetic applications. J. Org. Chem. 74, 8939–8955 (2009).

    CAS  PubMed  Google Scholar 

  43. Ghanem, A., Gardiner, M. G., Williamson, R. M. & Müller, P. First X-ray structure of a N-naphthaloyl-tethered chiral dirhodium(ii) complex: structural basis for tether substitution improving asymmetric control in olefin cyclopropanation. Chem. Eur. J. 16, 3291–3295 (2010).

    CAS  PubMed  Google Scholar 

  44. Deng, C., Wang, L.-J., Zhu, J. & Tang, Y. A chiral cagelike copper(i) catalyst for the highly enantioselective synthesis of 1,1-cyclopropane diesters. Angew. Chem. Int. Ed. 51, 11620–11623 (2012).

    CAS  Google Scholar 

  45. Cotton, F. A., Murillo, C. A. & Walton, R. A. Multiple bonds between metal atoms 3rd edn (Springer, 2005).

  46. Lindsay, V. N. G., Lin, W. & Charette, A. B. Experimental evidence for the all-up reactive conformation of chiral rhodium(ii) carboxylate catalysts: enantioselective synthesis of cis-cyclopropane α-amino acids. J. Am. Chem. Soc. 131, 16383–16385 (2009).

    CAS  PubMed  Google Scholar 

  47. Werlé, C., Goddard, R., Philipps, P., Farés, C. & Fürstner, A. Stabilization of a chiral dirhodium carbene by encapsulation and a discussion of the stereochemical implications. Angew. Chem. Int. Ed. 55, 10760–10765 (2016).

    Google Scholar 

  48. Wang, Y., Wolf, J., Zavalij, P. & Doyle, M. P. Cationic chiral dirhodium carboxamidates are activated for Lewis acid catalysis. Angew. Chem. Int. Ed. 47, 1439–1442 (2008).

    CAS  Google Scholar 

  49. Doyle, M. P. & Ren, T. in Progress in Inorganic Chemistry Vol. 49 (ed Karlin, K. D.) 113–168 (Wiley, 2001).

  50. Chavan, M. Y., Feldmann, F. N., Lin, X. Q., Bear, J. L. & Kadish, K. M. Generation of dinuclear ruthenium acetamidate complexes with variable ruthenium-ruthenium bond orders. Inorg. Chem. 23, 2373–2375 (1984).

    CAS  Google Scholar 

  51. Cotton, F. A. & Pedersen, E. Magnetic and electrochemical properties of transition metal complexes with multiple metal-to-metal bonds. II. [Ru2(C3H7COO)4]n+ with n = 0 and 1. Inorg. Chem. 14, 388–391 (1975).

    CAS  Google Scholar 

Download references


This work was supported in part by JSPS KAKENHI Grant Numbers JP15H05802 (S.M.) and JP15H05804 (T.H.) in Precisely Designed Catalysts with Customized Scaffolding, and JSPS KAKENHI Grant Numbers JP18H04637 (T.Y.) and JP18H04651 (A.O.) in Hybrid Catalysis. We thank M. Kondo and S. Masaoka of Osaka University and T. Enomoto of the University of Tokyo for their support in the electrochemical analysis.

Author information

Authors and Affiliations



T.M., T.S., Y. Kumagai, K.T., Y. Kamei and F.K. synthesized the chiral diruthenium complexes. T.M., T.S., T.K. and T.Y. analysed the X-ray structures of the diruthenium and dirhodium complexes. S.K., A.O. and T.H. contributed to the EPR analysis of the diruthenium complexes. T.Y. performed EPR simulations. T.M. (C–H amination reactions), Y. Kumagai (HDA reactions) and K.T. (cyclopropanation reactions) mainly performed and analysed the catalytic asymmetric reactions and characterized the products. T.M. and M.K. performed and analysed the cyclic voltammetry experiments. T.M., T.S., M.A., M.K., T.Y. and S.M. conceived and designed the experiments, and prepared the manuscript. All authors contributed to discussions and commented on the manuscript.

Corresponding authors

Correspondence to Tatsuhiko Yoshino or Shigeki Matsunaga.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–19, Tables 1–8, Notes 1 and 2, references and copies of NMR and HPLC charts.

Supplementary Data 1

Cif file for 7d.

Supplementary Data 2

Cif file for Rh2((S)-BPTPI)4.

Supplementary Data 3

Cif file for 1-ClO4.

Supplementary Data 4

Cif file for 2-Cl.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miyazawa, T., Suzuki, T., Kumagai, Y. et al. Chiral paddle-wheel diruthenium complexes for asymmetric catalysis. Nat Catal 3, 851–858 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing