Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction

Abstract

Substantial progress has recently been made in the general understanding of the interfacial CO2 reduction reaction (CO2RR) in electro- and photocatalysis, but the influence of the local chemical environment and its effects on the catalytic interface at the molecular level remains largely elusive. Here, we introduce a classification scheme to group different aspects influencing the interfacial CO2RR thermodynamics and kinetics. This categorization allows a systematic survey of the literature focusing on the local chemical environment encompassing surface effects (adsorbates, support), solution interactions (electrolyte constituents) and three-dimensional chemical surroundings (polymers, metal organic frameworks (MOFs), covalent organic frameworks (COFs)). The review concludes with an outlook discussing possible future concepts for next-generation electrocatalytic and photocatalytic CO2RR.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Classification of the local chemical environment effects in CO2RR.
Fig. 2: Surface-modifiers grouped into different classes used to modulate the local chemical environment around the catalytic site.
Fig. 3: Local chemical environment effects in solution.
Fig. 4: Local chemical environment effects in CO2RR using 3D-catalyst architectures.

References

  1. 1.

    Artz, J. et al. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem. Rev. 118, 434–504 (2018).

    CAS  PubMed  Google Scholar 

  2. 2.

    Wang, W.-H., Himeda, Y., Muckerman, J. T., Manbeck, G. F. & Fujita, E. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 115, 12936–12973 (2015).

    CAS  PubMed  Google Scholar 

  3. 3.

    Liu, Q., Wu, L., Jackstell, R. & Beller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun. 6, 5933 (2015).

    PubMed  Google Scholar 

  4. 4.

    Kuhl, K. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014). This paper highlights that multiple transition metals beyond Cu facilitate the conversion of CO2 to reduced species beyond CO.

    CAS  PubMed  Google Scholar 

  5. 5.

    Mezzavilla, S., Horch, S., Stephens, I. E. L., Seger, B. & Chorkendorff, I. Structure sensitivity in the electrocatalytic reduction of CO2 with gold catalysts. Angew. Chem. Int. Ed. 58, 3774–3778 (2019).

    CAS  Google Scholar 

  6. 6.

    Mariano, R. G., McKelvey, K., White, H. S. & Kanan, M. W. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358, 1187–1192 (2017).

    CAS  PubMed  Google Scholar 

  7. 7.

    Hall, A. S., Yoon, Y., Wuttig, A. & Surendranath, Y. Mesostructure-induced selectivity in CO2 reduction catalysis. J. Am. Chem. Soc. 137, 14834–14837 (2015).

    CAS  PubMed  Google Scholar 

  8. 8.

    Hansen, H. A., Varley, J. B., Peterson, A. A. & Nørskov, J. K. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 4, 388–392 (2013). The reactivity trends of a series of metals was rationalized via linear scaling relationships of the COOH and CO binding energy and compared to carbon monoxide dehydrogenase, which overcomes these limitations via NCI effects.

    CAS  PubMed  Google Scholar 

  9. 9.

    Akhade, S. A., Luo, W., Nie, X., Asthagiri, A. & Janik, M. J. Theoretical insight on reactivity trends in CO2 electroreduction across transition metals. Catal. Sci. Technol. 6, 1042–1053 (2016).

    CAS  Google Scholar 

  10. 10.

    Bagger, A., Arnarson, L., Hansen, M. H., Spohr, E. & Rossmeisl, J. Electrochemical CO reduction: a property of the electrochemical interface. J. Am. Chem. Soc. 141, 1506–1514 (2019).

    CAS  PubMed  Google Scholar 

  11. 11.

    Calle-Vallejo, F. & Koper, M. T. M. Accounting for bifurcating pathways in the screening for CO2 reduction catalysts. ACS Catal. 7, 7346–7351 (2017).

    CAS  Google Scholar 

  12. 12.

    Nie, X., Esopi, M. R., Janik, M. J. & Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 52, 2459–2462 (2013).

    CAS  Google Scholar 

  13. 13.

    Dalle, K. E. et al. Electro- and solar-driven fuel synthesis with first row transition metal complexes. Chem. Rev. 119, 2752–2875 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Rao, H., Schmidt, L. C., Bonin, J. & Robert, M. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature 548, 74–77 (2017).

    CAS  PubMed  Google Scholar 

  15. 15.

    Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    CAS  PubMed  Google Scholar 

  16. 16.

    Shen, J. et al. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat. Commun. 6, 8177 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Berggren, G. et al. Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499, 66–69 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Bassegoda, A., Madden, C., Wakerley, D. W., Reisner, E. & Hirst, J. Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase. J. Am. Chem. Soc. 136, 15473–15476 (2014).

    CAS  PubMed  Google Scholar 

  19. 19.

    Shin, W., Lee, S. H., Shin, J. W., Lee, S. P. & Kim, Y. Highly selective electrocatalytic conversion of CO2 to CO at −0.57 V (NHE) by carbon monoxide dehydrogenase from Moorella thermoacetica. J. Am. Chem. Soc. 125, 14688–14689 (2003).

    CAS  PubMed  Google Scholar 

  20. 20.

    Evans, R. M. et al. Mechanism of hydrogen activation by [NiFe] hydrogenases. Nat. Chem. Biol. 12, 46–50 (2016).

    CAS  PubMed  Google Scholar 

  21. 21.

    Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    PubMed  Google Scholar 

  22. 22.

    Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019). Review giving an overview on the electrocatalytic conversion of CO2.

    CAS  Google Scholar 

  23. 23.

    Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019). In-depth review of electrocatalytic CO2 reduction on copper.

    CAS  PubMed  Google Scholar 

  24. 24.

    Marszewski, M., Cao, S., Yu, J. & Jaroniec, M. Semiconductor-based photocatalytic CO2 conversion. Mater. Horiz. 2, 261–278 (2015).

    CAS  Google Scholar 

  25. 25.

    Chen, Y. & Mu, T. Conversion of CO2 to value-added products mediated by ionic liquids. Green Chem. 21, 2544–2574 (2019).

    CAS  Google Scholar 

  26. 26.

    Handoko, A. D., Wei, F., Jenndy, Yeo, B. S. & Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 1, 922–934 (2018).

    CAS  Google Scholar 

  27. 27.

    Sun, L., Reddu, V., Fisher, A. C. & Wang, X. Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts. Energy Environ. Sci. 13, 374–403 (2020).

    CAS  Google Scholar 

  28. 28.

    Nam, D.-H. et al. Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 19, 266–276 (2020).

    CAS  PubMed  Google Scholar 

  29. 29.

    Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005).

    Google Scholar 

  30. 30.

    Rodriguez, P., Kwon, Y. & Koper, M. T. M. The promoting effect of adsorbed carbon monoxide on the oxidation of alcohols on a gold catalyst. Nat. Chem. 4, 177–182 (2012).

    CAS  Google Scholar 

  31. 31.

    Tong, Y. J. Unconventional promoters of catalytic activity in electrocatalysis. Chem. Soc. Rev. 41, 8195–8209 (2012).

    CAS  PubMed  Google Scholar 

  32. 32.

    Cave, E. R. et al. Trends in the catalytic activity of hydrogen evolution during CO2 electroreduction on transition metals. ACS Catal. 8, 3035–3040 (2018).

    CAS  Google Scholar 

  33. 33.

    Jovanov, Z. P. et al. Opportunities and challenges in the electrocatalysis of CO2 and CO reduction using bifunctional surfaces: a theoretical and experimental study of Au–Cd alloys. J. Catal. 343, 215–231 (2016).

    CAS  Google Scholar 

  34. 34.

    Le Duff, C. S., Lawrence, M. J. & Rodriguez, P. Role of the adsorbed oxygen species in the selective electrochemical reduction of CO2 to alcohols and carbonyls on copper electrodes. Angew. Chem. Int. Ed. 56, 12919–12924 (2017).

    Google Scholar 

  35. 35.

    Bohra, D. et al. Lateral adsorbate interactions inhibit HCOO while promoting CO selectivity for CO2 electrocatalysis on silver. Angew. Chem. Int. Ed. 58, 1345–1349 (2019).

    CAS  Google Scholar 

  36. 36.

    Wuttig, A., Ryu, J. & Surendranath, Y. Electrolyte competition controls surface binding of CO intermediates to CO2 reduction catalysts. Preprint at https://doi.org/10.26434/chemrxiv.7929038.v2 (2019).

  37. 37.

    Gunathunge, C. M., Ovalle, V. J., Li, Y., Janik, M. J. & Waegele, M. M. Existence of an electrochemically inert CO population on Cu electrodes in alkaline pH. ACS Catal. 8, 7507–7516 (2018).

    CAS  Google Scholar 

  38. 38.

    Wuttig, A., Yaguchi, M., Motobayashi, K., Osawa, M. & Surendranath, Y. Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. Proc. Natl Acad. Sci. USA 113, E4585–E4593 (2016).

    CAS  PubMed  Google Scholar 

  39. 39.

    Thevenon, A., Rosas-Hernández, A., Peters, J. C. & Agapie, T. In-situ nanostructuring and stabilization of polycrystalline copper by an organic salt additive promotes electrocatalytic CO2 reduction to ethylene. Angew. Chem. Int. Ed. 58, 16952–16958 (2019).

    CAS  Google Scholar 

  40. 40.

    Ovalle, V. J. & Waegele, M. M. Understanding the impact of N-arylpyridinium ions on the selectivity of CO2 reduction at the Cu/electrolyte interface. J. Phys. Chem. C. 123, 24453–24460 (2019).

    CAS  Google Scholar 

  41. 41.

    Fang, Y. & Flake, J. C. Electrochemical reduction of CO2 at functionalized Au electrodes. J. Am. Chem. Soc. 139, 3399–3405 (2017).

    CAS  PubMed  Google Scholar 

  42. 42.

    Kim, C. et al. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 137, 13844–13850 (2015).

    CAS  PubMed  Google Scholar 

  43. 43.

    Li, F. & Tang, Q. Understanding the role of functional groups of thiolate ligands in electrochemical CO2 reduction over Au(111) from first-principles. J. Mater. Chem. A 7, 19872–19880 (2019).

    CAS  Google Scholar 

  44. 44.

    Kim, C. et al. Insight into electrochemical CO2 reduction on surface-molecule-mediated Ag nanoparticles. ACS Catal. 7, 779–785 (2017).

    CAS  Google Scholar 

  45. 45.

    Xie, M. S. et al. Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 9, 1687–1695 (2016).

    CAS  Google Scholar 

  46. 46.

    Wakerley, D. et al. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 18, 1222–1227 (2019).

    CAS  PubMed  Google Scholar 

  47. 47.

    Han, Z., Kortlever, R., Chen, H.-Y., Peters, J. C. & Agapie, T. CO2 reduction selective for C≥2 products on polycrystalline copper with N-substituted pyridinium additives. ACS Cent. Sci. 3, 853–859 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Li, F. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020).

    CAS  PubMed  Google Scholar 

  49. 49.

    Cao, Z. et al. Chelating N-heterocyclic carbene ligands enable tuning of electrocatalytic CO2 reduction to formate and carbon monoxide: surface organometallic chemistry. Angew. Chem. Int. Ed. 57, 4981–4985 (2018).

    CAS  Google Scholar 

  50. 50.

    Cao, Z. et al. A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction. J. Am. Chem. Soc. 138, 8120–8125 (2016). Early report using NHC ligands to improve the performance in electrocatalytic CO2 conversion.

    CAS  PubMed  Google Scholar 

  51. 51.

    Cao, Z. et al. Tuning gold nanoparticles with chelating ligands for highly efficient electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 57, 12675–12679 (2018).

    CAS  Google Scholar 

  52. 52.

    Pankhurst, J. R., Guntern, Y. T., Mensi, M. & Buonsanti, R. Molecular tunability of surface-functionalized metal nanocrystals for selective electrochemical CO2 reduction. Chem. Sci. 10, 10356–10365 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Wagner, A. et al. Host–guest chemistry meets electrocatalysis: cucurbit[6]uril on a Au surface as a hybrid system in CO2 reduction. ACS Catal. 10, 751–761 (2020).

    CAS  PubMed  Google Scholar 

  54. 54.

    Liu, B.-J., Torimoto, T. & Yoneyama, H. Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents. J. Photochem. Photobiol. A Chem. 113, 93–97 (1998).

    CAS  Google Scholar 

  55. 55.

    Liao, Y. et al. Efficient CO2 capture and photoreduction by amine-functionalized TiO2. Chem. Eur. J. 20, 10220–10222 (2014).

    CAS  PubMed  Google Scholar 

  56. 56.

    Huang, Q., Yu, J., Cao, S., Cui, C. & Cheng, B. Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4. Appl. Surf. Sci. 358, 350–355 (2015).

    CAS  Google Scholar 

  57. 57.

    Cho, K. M. et al. Amine-functionalized graphene/CdS composite for photocatalytic reduction of CO2. ACS Catal. 7, 7064–7069 (2017).

    CAS  Google Scholar 

  58. 58.

    Kuehnel, M. F. et al. ZnSe quantum dots modified with a Ni(cyclam) catalyst for efficient visible-light driven CO2 reduction in water. Chem. Sci. 9, 2501–2509 (2018). Study using capping ligand design to tune the product selectivity (H2 versus CO) through blocking of catalytic sites in QD-promoted photoreduction of CO2.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Corma, A. & Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 37, 2096–2126 (2008).

    CAS  PubMed  Google Scholar 

  60. 60.

    Kim, J.-H., Woo, H., Choi, J., Jung, H.-W. & Kim, Y.-T. CO2 electroreduction on Au/TiC: enhanced activity due to metal–support interaction. ACS Catal. 7, 2101–2106 (2017).

    CAS  Google Scholar 

  61. 61.

    Gao, D. et al. Enhancing CO2 electroreduction with the metal–oxide interface. J. Am. Chem. Soc. 139, 5652–5655 (2017).

    CAS  PubMed  Google Scholar 

  62. 62.

    Schreier, M. et al. Solar conversion of CO2 to CO using earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nat. Energy 2, 17087 (2017).

    CAS  Google Scholar 

  63. 63.

    Chu, S. et al. Photoelectrochemical CO2 reduction into syngas with the metal/oxide interface. J. Am. Chem. Soc. 140, 7869–7877 (2018).

    CAS  PubMed  Google Scholar 

  64. 64.

    Rogers, C. et al. Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes. J. Am. Chem. Soc. 139, 4052–4061 (2017).

    CAS  PubMed  Google Scholar 

  65. 65.

    Varela, A. S. et al. Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angew. Chem. Int. Ed. 54, 10758–10762 (2015).

    CAS  Google Scholar 

  66. 66.

    Ju, W. et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 944 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Zhang, H. et al. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 58, 14871–14876 (2019).

    CAS  Google Scholar 

  68. 68.

    Lin, L. et al. Synergistic catalysis over iron–nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv. Mater. 31, 1903470 (2019).

    CAS  Google Scholar 

  69. 69.

    Corbin, N., Zeng, J., Williams, K. & Manthiram, K. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano Res. 12, 2093–2125 (2019).

    CAS  Google Scholar 

  70. 70.

    Birdja, Y. Y. et al. Effects of substrate and polymer encapsulation on CO2 electroreduction by immobilized indium(iii) protoporphyrin. ACS Catal. 8, 4420–4428 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Wang, J. et al. Linkage effect in the heterogenization of cobalt complexes by doped graphene for electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 58, 13532–13539 (2019).

    CAS  Google Scholar 

  72. 72.

    Reuillard, B. et al. Tuning product selectivity for aqueous CO2 reduction with a Mn(bipyridine)-pyrene catalyst immobilized on a carbon nanotube electrode. J. Am. Chem. Soc. 139, 14425–14435 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Oh, S., Gallagher, J. R., Miller, J. T. & Surendranath, Y. Graphite-conjugated rhenium catalysts for carbon dioxide reduction. J. Am. Chem. Soc. 138, 1820–1823 (2016). A powerful surface functionalization strategy was utilized to bridge between heterogeneous and molecular catalysis and significantly alter the catalytic mechanism and performance.

    CAS  Google Scholar 

  74. 74.

    Leung, J. J. et al. Solar-driven reduction of aqueous CO2 with a cobalt bis(terpyridine)-based photocathode. Nat. Catal. 2, 354–365 (2019).

    CAS  Google Scholar 

  75. 75.

    Xie, S. et al. Photocatalytic reduction of CO2 with H2O: significant enhancement of the activity of Pt–TiO2 in CH4 formation by addition of MgO. Chem. Commun. 49, 2451 (2013).

    CAS  Google Scholar 

  76. 76.

    Pang, R., Teramura, K., Asakura, H., Hosokawa, S. & Tanaka, T. Effect of thickness of chromium hydroxide layer on Ag cocatalyst surface for highly selective photocatalytic conversion of CO2 by H2O. ACS Sustain. Chem. Eng. 7, 2083–2090 (2019).

    CAS  Google Scholar 

  77. 77.

    Zhang, B. A., Ozel, T., Elias, J. S., Costentin, C. & Nocera, D. G. Interplay of homogeneous reactions, mass transport, and kinetics in determining selectivity of the reduction of CO2 on gold electrodes. ACS Cent. Sci. 5, 1097–1105 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017). A detailed study on the effects of alkali metal cations showed varied implications on different reaction products and highlighted the role of dipole moments on surface-bound reaction intermediates.

    CAS  PubMed  Google Scholar 

  79. 79.

    Moura de Salles Pupo, M. & Kortlever, R. Electrolyte effects on the electrochemical reduction of CO2. ChemPhysChem 20, 2926–2935 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Singh, M. R., Kwon, Y., Lum, Y., Ager, J. W. III. & Bell, A. T. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 138, 13006–13012 (2016).

    CAS  PubMed  Google Scholar 

  81. 81.

    Zhang, F. & Co, A. C. Direct evidence of local pH change and the role of alkali cation during CO2 electroreduction in aqueous media. Angew. Chem. Int. Ed. 59, 1674–1681 (2020).

    CAS  Google Scholar 

  82. 82.

    Ayemoba, O. & Cuesta, A. Spectroscopic evidence of size-dependent buffering of interfacial pH by cation hydrolysis during CO2 electroreduction. ACS Appl. Mater. Interfaces 9, 27377–27382 (2017).

    CAS  PubMed  Google Scholar 

  83. 83.

    Wang, L. et al. Electrochemical carbon monoxide reduction on polycrystalline copper: effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS Catal. 8, 7445–7454 (2018).

    CAS  Google Scholar 

  84. 84.

    Pérez-Gallent, E., Marcandalli, G., Figueiredo, M. C., Calle-Vallejo, F. & Koper, M. T. M. Structure- and potential-dependent cation effects on CO reduction at copper single-crystal electrodes. J. Am. Chem. Soc. 139, 16412–16419 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Gunathunge, C. M., Ovalle, V. J. & Waegele, M. M. Probing promoting effects of alkali cations on the reduction of CO at the aqueous electrolyte/copper interface. Phys. Chem. Chem. Phys. 19, 30166–30172 (2017).

    CAS  PubMed  Google Scholar 

  86. 86.

    Chen, L. D., Urushihara, M., Chan, K. & Nørskov, J. K. Electric field effects in electrochemical CO2 reduction. ACS Catal. 6, 7133–7139 (2016).

    CAS  Google Scholar 

  87. 87.

    Clark, M. L. et al. CO2 reduction catalysts on gold electrode surfaces influenced by large electric fields. J. Am. Chem. Soc. 140, 17643–17655 (2018).

    CAS  PubMed  Google Scholar 

  88. 88.

    Ringe, S. et al. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019).

    CAS  Google Scholar 

  89. 89.

    Bohra, D., Chaudhry, J. H., Burdyny, T., Pidko, E. A. & Smith, W. A. Modeling the electrical double layer to understand the reaction environment in a CO2 electrocatalytic system. Energy Environ. Sci. 12, 3380–3389 (2019).

    CAS  Google Scholar 

  90. 90.

    Akhade, S. A., McCrum, I. T. & Janik, M. J. The Impact of specifically adsorbed ions on the copper-catalyzed electroreduction of CO2. J. Electrochem. Soc. 163, F477–F484 (2016).

    CAS  Google Scholar 

  91. 91.

    Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    CAS  PubMed  Google Scholar 

  92. 92.

    Jiang, H., Hou, Z. & Luo, Y. Unraveling the mechanism for the sharp-tip enhanced electrocatalytic carbon dioxide reduction: the kinetics decide. Angew. Chem. Int. Ed. 56, 15617–15621 (2017).

    CAS  Google Scholar 

  93. 93.

    Burdyny, T. et al. Nanomorphology-enhanced gas-evolution intensifies CO2 reduction electrochemistry. ACS Sustain. Chem. Eng. 5, 4031–4040 (2017).

    CAS  Google Scholar 

  94. 94.

    Li, J., Li, X., Gunathunge, C. M. & Waegele, M. M. Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction. Proc. Natl Acad. Sci. USA 116, 9220–9229 (2019). This study highlights the interactions of interfacial H2O with surface-bound intermediates and the effect of quaternary alkyl ammonium cations.

    CAS  PubMed  Google Scholar 

  95. 95.

    Buckley, A. K. et al. Electrocatalysis at organic–metal interfaces: identification of structure–reactivity relationships for CO2 reduction at modified Cu surfaces. J. Am. Chem. Soc. 141, 7355–7364 (2019).

    CAS  PubMed  Google Scholar 

  96. 96.

    Barton Cole, E. et al. Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J. Am. Chem. Soc. 132, 11539–11551 (2010).

    CAS  Google Scholar 

  97. 97.

    Dridi, H. et al. Catalysis and inhibition in the electrochemical reduction of CO2 on platinum in the presence of protonated pyridine. New insights into mechanisms and products. J. Am. Chem. Soc. 139, 13922–13928 (2017).

    CAS  PubMed  Google Scholar 

  98. 98.

    Olu, P.-Y., Li, Q. & Krischer, K. The true fate of pyridinium in the reportedly pyridinium-catalyzed carbon dioxide electroreduction on platinum. Angew. Chem. Int. Ed. 57, 14769–14772 (2018).

    CAS  Google Scholar 

  99. 99.

    Hori, Y., Murata, A. & Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc., Faraday Trans. 1 85, 2309 (1989).

    CAS  Google Scholar 

  100. 100.

    Resasco, J., Lum, Y., Clark, E., Zeledon, J. Z. & Bell, A. T. Effects of anion identity and concentration on electrochemical reduction of CO2. ChemElectroChem 5, 1064–1072 (2018).

    CAS  Google Scholar 

  101. 101.

    Hashiba, H. et al. Effects of electrolyte buffer capacity on surface reactant species and the reaction rate of CO2 in electrochemical CO2 reduction. J. Phys. Chem. C. 122, 3719–3726 (2018).

    CAS  Google Scholar 

  102. 102.

    Seifitokaldani, A. et al. Hydronium-induced switching between CO2 electroreduction pathways. J. Am. Chem. Soc. 140, 3833–3837 (2018).

    CAS  PubMed  Google Scholar 

  103. 103.

    Varela, A. S., Ju, W., Reier, T. & Strasser, P. Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides. ACS Catal. 6, 2136–2144 (2016).

    CAS  Google Scholar 

  104. 104.

    Rosen, B. A. et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643–644 (2011). The first example of an ionic liquid additive in the electrolyte that significantly enhances CO2 electroreduction on Ag through interactions of the ionic liquid with a catalytic intermediate.

    CAS  PubMed  Google Scholar 

  105. 105.

    Rosen, B. A. et al. In situ spectroscopic examination of a low overpotential pathway for carbon dioxide conversion to carbon monoxide. J. Phys. Chem. C. 116, 15307–15312 (2012).

    CAS  Google Scholar 

  106. 106.

    Wang, Y. et al. Activation of CO2 by ionic liquid EMIM–BF4 in the electrochemical system: a theoretical study. Phys. Chem. Chem. Phys. 17, 23521–23531 (2015).

    CAS  PubMed  Google Scholar 

  107. 107.

    Zhao, S.-F., Horne, M., Bond, A. M. & Zhang, J. Is the imidazolium cation a unique promoter for electrocatalytic reduction of carbon dioxide? J. Phys. Chem. C. 120, 23989–24001 (2016).

    CAS  Google Scholar 

  108. 108.

    Sun, L., Ramesha, G. K., Kamat, P. V. & Brennecke, J. F. Switching the reaction course of electrochemical CO2 reduction with ionic liquids. Langmuir 30, 6302–6308 (2014).

    CAS  PubMed  Google Scholar 

  109. 109.

    Lau, G. P. S. et al. New insights into the role of imidazolium-based promoters for the electroreduction of CO2 on a silver electrode. J. Am. Chem. Soc. 138, 7820–7823 (2016).

    CAS  PubMed  Google Scholar 

  110. 110.

    Asadi, M. et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 353, 467–470 (2016).

    CAS  PubMed  Google Scholar 

  111. 111.

    Lim, H.-K. et al. Insight into the microenvironments of the metal–ionic liquid interface during electrochemical CO2 reduction. ACS Catal. 8, 2420–2427 (2018).

    CAS  Google Scholar 

  112. 112.

    García Rey, N. & Dlott, D. D. Effects of water on low-overpotential CO2 reduction in ionic liquid studied by sum-frequency generation spectroscopy. Phys. Chem. Chem. Phys. 19, 10491–10501 (2017).

    PubMed  Google Scholar 

  113. 113.

    Hollingsworth, N. et al. Reduction of carbon dioxide to formate at low overpotential using a superbase ionic liquid. Angew. Chem. Int. Ed. 54, 14164–14168 (2015).

    CAS  Google Scholar 

  114. 114.

    Atifi, A., Boyce, D. W., DiMeglio, J. L. & Rosenthal, J. Directing the outcome of CO2 reduction at bismuth cathodes using varied ionic liquid promoters. ACS Catal. 8, 2857–2863 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Vasilyev, D., Shirzadi, E., Rudnev, A. V., Broekmann, P. & Dyson, P. J. Pyrazolium ionic liquid co-catalysts for the electroreduction of CO2. ACS Appl. Energy Mater. 1, 5124–5128 (2018).

    CAS  Google Scholar 

  116. 116.

    Chen, Y. et al. Visible-light-driven conversion of CO2 from air to CO using an ionic liquid and a conjugated polymer. Green Chem. 19, 5777–5781 (2017).

    CAS  Google Scholar 

  117. 117.

    Feaster, J. T. et al. Understanding the influence of [EMIM]Cl on the suppression of the hydrogen evolution reaction on transition metal electrodes. Langmuir 33, 9464–9471 (2017).

    CAS  PubMed  Google Scholar 

  118. 118.

    Banerjee, S., Han, X. & Thoi, V. S. Modulating the electrode–electrolyte interface with cationic surfactants in carbon dioxide reduction. ACS Catal. 9, 5631–5637 (2019).

    CAS  Google Scholar 

  119. 119.

    Quan, F., Xiong, M., Jia, F. & Zhang, L. Efficient electroreduction of CO2 on bulk silver electrode in aqueous solution via the inhibition of hydrogen evolution. Appl. Surf. Sci. 399, 48–54 (2017).

    CAS  Google Scholar 

  120. 120.

    Kramer, W. W. & McCrory, C. C. L. Polymer coordination promotes selective CO2 reduction by cobalt phthalocyanine. Chem. Sci. 7, 2506–2515 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Kajiwara, T. et al. Photochemical reduction of low concentrations of CO2 in a porous coordination polymer with a ruthenium(ii)–CO complex. Angew. Chem. Int. Ed. 55, 2697–2700 (2016).

    CAS  Google Scholar 

  122. 122.

    Varela, A. S., Kroschel, M., Reier, T. & Strasser, P. Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. Catal. Today 260, 8–13 (2016).

    CAS  Google Scholar 

  123. 123.

    Burdyny, T. & Smith, W. A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12, 1442–1453 (2019).

    CAS  Google Scholar 

  124. 124.

    Larrazábal, G. O. et al. Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-Type electrolyzer. ACS Appl. Mater. Interfaces 11, 41281–41288 (2019).

    PubMed  Google Scholar 

  125. 125.

    Nam, D.-H. et al. Metal–organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 140, 11378–11386 (2018).

    CAS  PubMed  Google Scholar 

  126. 126.

    Wang, X. et al. Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2. Angew. Chem. Int. Ed. 57, 1944–1948 (2018).

    CAS  Google Scholar 

  127. 127.

    Guntern, Y. T. et al. Nanocrystal/Metal–organic framework hybrids as electrocatalytic platforms for CO2 conversion. Angew. Chem. Int. Ed. 58, 12632–12639 (2019).

    CAS  Google Scholar 

  128. 128.

    Kornienko, N. et al. Metal–organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137, 14129–14135 (2015). This study presents one of the first examples of the incorporation of a molecular CO2RR catalyst into a metal–organic framework.

    CAS  PubMed  Google Scholar 

  129. 129.

    Hod, I. et al. Fe-porphyrin-based metal–organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal. 5, 6302–6309 (2015).

    CAS  Google Scholar 

  130. 130.

    Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    CAS  PubMed  Google Scholar 

  131. 131.

    Fei, H., Sampson, M. D., Lee, Y., Kubiak, C. P. & Cohen, S. M. Photocatalytic CO2 reduction to formate using a Mn(i) molecular catalyst in a robust metal–organic framework. Inorg. Chem. 54, 6821–6828 (2015).

    CAS  PubMed  Google Scholar 

  132. 132.

    Wang, S., Yao, W., Lin, J., Ding, Z. & Wang, X. Cobalt imidazolate metal-organic frameworks photosplit CO2 under mild reaction conditions. Angew. Chem. Int. Ed. 53, 1034–1038 (2014).

    CAS  Google Scholar 

  133. 133.

    Ryu, U. J. et al. Synergistic interaction of Re complex and amine functionalized multiple ligands in metal–organic frameworks for conversion of carbon dioxide. Sci. Rep. 7, 612 (2017).

    PubMed  PubMed Central  Google Scholar 

  134. 134.

    Wang, Y. et al. Hydroxide ligands cooperate with catalytic centers in metal–organic frameworks for efficient photocatalytic CO2 reduction. J. Am. Chem. Soc. 140, 38–41 (2018).

    CAS  PubMed  Google Scholar 

  135. 135.

    Ahn, S. et al. Poly-amide modified copper foam electrodes for enhanced electrochemical reduction of carbon dioxide. ACS Catal. 8, 4132–4142 (2018).

    CAS  Google Scholar 

  136. 136.

    Wei, X. et al. Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces. ACS Catal. 10, 4103–4111 (2020).

    CAS  Google Scholar 

  137. 137.

    Zhang, L. et al. A polymer solution to prevent nanoclustering and improve the selectivity of metal nanoparticles for electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 58, 15834–15840 (2019).

    CAS  Google Scholar 

  138. 138.

    Liu, Y. & McCrory, C. C. L. Modulating the mechanism of electrocatalytic CO2 reduction by cobalt phthalocyanine through polymer coordination and encapsulation. Nat. Commun. 10, 1683 (2019). A detailed analysis of a functional polymer-encapsulation of a CO2RR catalyst and its effects on the chemical environment of the catalyst.

    PubMed  PubMed Central  Google Scholar 

  139. 139.

    McNicholas, B. J. et al. Electrocatalysis of CO2 reduction in brush polymer ion gels. J. Am. Chem. Soc. 138, 11160–11163 (2016).

    CAS  PubMed  Google Scholar 

  140. 140.

    Leung, J. J., Vigil, J. A., Warnan, J., Edwardes Moore, E. & Reisner, E. Rational design of polymers for selective CO2 reduction catalysis. Angew. Chem. Int. Ed. 58, 7697–7701 (2019).

    CAS  Google Scholar 

  141. 141.

    Liu, G., Xie, S., Zhang, Q., Tian, Z. & Wang, Y. Carbon dioxide-enhanced photosynthesis of methane and hydrogen from carbon dioxide and water over Pt-promoted polyaniline–TiO2 nanocomposites. Chem. Commun. 51, 13654–13657 (2015).

    CAS  Google Scholar 

  142. 142.

    Li, A. et al. Three-phase photocatalysis for the enhanced selectivity and activity of CO2 reduction on a hydrophobic surface. Angew. Chem. Int. Ed. 58, 14549–14555 (2019). This work describes the introduction of a hydrophobic polymer on Pt-decorated carbon nitride photocatalyst, thus concentrating CO2 molecules in the vicinity of the catalytic site.

    CAS  Google Scholar 

  143. 143.

    Govindarajan, N., Koper, M. T. M., Meijer, E. J. & Calle-Vallejo, F. Outlining the scaling-based and scaling-free optimization of electrocatalysts. ACS Catal. 9, 4218–4225 (2019).

    CAS  Google Scholar 

  144. 144.

    Jeoung, J.-H. J.-H. & Dobbek, H. Carbon dioxide activation at the Ni, Fe-cluster of anaerobic carbon monoxide dehydrogenase. Science 318, 1461–1464 (2007).

    CAS  PubMed  Google Scholar 

  145. 145.

    Parkin, A., Seravalli, J., Vincent, K. A., Ragsdale, S. W. & Armstrong, F. A. Rapid and efficient electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode. J. Am. Chem. Soc. 129, 10328–10329 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Nakajima, T. et al. Photocatalytic reduction of low concentration of CO2. J. Am. Chem. Soc. 138, 13818–13821 (2016).

    CAS  PubMed  Google Scholar 

  147. 147.

    Kumagai, H. et al. Electrocatalytic reduction of low concentration CO2. Chem. Sci. 10, 1597–1606 (2019).

    CAS  PubMed  Google Scholar 

  148. 148.

    McDonald, T. M. et al. Cooperative insertion of CO2 in diamine-appended metal–organic frameworks. Nature 519, 303–308 (2015).

    CAS  PubMed  Google Scholar 

  149. 149.

    García de Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020). This work highlights the possibilities of electrocatalytic CO2 conversion by reaching commercially relevant current densities through chemical modification of the gas diffusion electrode ionomer.

    PubMed  Google Scholar 

  150. 150.

    Ren, S. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support by the Christian Doppler Research Association, the Austrian Federal Ministry for Digital and Economic Affairs, the National Foundation for Research, Technology and Development and the OMV Group. We would like to thank Dr. Souvik Roy and Dr. Tengfei Li for feedback and careful proofreading of the manuscript.

Author information

Affiliations

Authors

Contributions

A.W. and C.S. researched literature and drafted the outline and the manuscript, E.R. contributed references and discussions, reviewed and revised the outline and the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Erwin Reisner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wagner, A., Sahm, C.D. & Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat Catal 3, 775–786 (2020). https://doi.org/10.1038/s41929-020-00512-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing