Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanometre-scale spectroscopic visualization of catalytic sites during a hydrogenation reaction on a Pd/Au bimetallic catalyst

Abstract

Understanding the mechanism of catalytic hydrogenation at the local environment requires chemical and topographic information involving catalytic sites, active hydrogen species, and their spatial distribution. Here we used tip-enhanced Raman spectroscopy (TERS) to study the catalytic hydrogenation of chloronitrobenzenethiol on a well-defined Pd(submonolayer)/Au(111) bimetallic catalyst (\(p_{\rm{H}_{2}}\) = 1.5 bar, 298 K), where the surface topography and chemical fingerprint information were simultaneously mapped with nanoscale resolution (~10 nm). TERS imaging of the surface after catalytic hydrogenation confirms that the reaction occurs beyond the location of Pd sites. The results demonstrate that hydrogen spillover accelerates hydrogenation at Au sites as far as 20 nm from the bimetallic Pd/Au boundary. Density functional theory was used to elucidate the thermodynamics of interfacial hydrogen transfers. We demonstrate TERS to be a powerful analytical tool that provides a unique approach to spatially investigate the local structure–reactivity relationship in catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TERS studies of monometallic and bimetallic model catalysts.
Fig. 2: TERS line scan results.
Fig. 3: TERS 2D maps.
Fig. 4: TERS maps revealing hydrogen spillover.
Fig. 5: Hydrogen spillover region identification.
Fig. 6: DFT calculations.

Similar content being viewed by others

Data availability

The original data used in this publication are made available in a curated data archive at ETH Zurich (https://www.researchcollection.ethz.ch) under https://doi.org/10.3929/ethz-b-000423837, or are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The MATLAB codes used for processing the data are made available in a curated data archive at ETH Zurich (https://www.researchcollection.ethz.ch) under https://doi.org/10.3929/ethz-b-000423837, or are available from the corresponding authors upon reasonable request.

References

  1. Buurmans, I. L. C. & Weckhuysen, B. M. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat. Chem. 4, 873–886 (2012).

    CAS  PubMed  Google Scholar 

  2. Sambur, J. B. et al. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes. Nature 530, 77–80 (2016).

    CAS  PubMed  Google Scholar 

  3. Agarwal, N. et al. Aqueous Au–Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358, 223–227 (2017).

    CAS  PubMed  Google Scholar 

  4. Cárdenas-Lizana, F. et al. Pd-promoted selective gas phase hydrogenation of p-chloronitrobenzene over alumina supported Au. J. Catal. 262, 235–243 (2009).

    Google Scholar 

  5. Lucci, F. R. et al. Controlling hydrogen activation, spillover, and desorption with Pd−Au single-atom alloys. J. Phys. Chem. Lett. 7, 480–485 (2016).

    CAS  PubMed  Google Scholar 

  6. Marcinkowski, M. et al. Controlling a spillover pathway with the molecular cork effect. Nat. Mater. 12, 523–528 (2013).

    CAS  PubMed  Google Scholar 

  7. Huizinga, T. & Prins, R. Behavior of titanium (3+) centers in the low- and high-temperature reduction of platinum/titanium dioxide, studied by ESR. J. Phys. Chem. 85, 2156–2158 (1981).

    CAS  Google Scholar 

  8. Briggs, N. M. et al. Identification of active sites on supported metal catalysts with carbon nanotube hydrogen highways. Nat. Commun. 9, 3827 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).

    CAS  PubMed  Google Scholar 

  10. Miller, J. T. et al. Hydrogen temperature-programmed desorption (H2 TPD) of supported platinum catalysts. J. Catal. 143, 395–408 (1993).

    CAS  Google Scholar 

  11. Karim, W. et al. Catalyst support effects on hydrogen spillover. Nature 541, 68–71 (2017).

    CAS  PubMed  Google Scholar 

  12. van Lent, R. et al. Site-specific reactivity of molecules with surface defects—the case of H2 dissociation on Pt. Science 363, 155–157 (2019).

    PubMed  Google Scholar 

  13. Dong, J. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2019).

    CAS  Google Scholar 

  14. Zhong, J. et al. Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nat. Nanotechnol. 12, 132–136 (2017).

    CAS  PubMed  Google Scholar 

  15. Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

    CAS  PubMed  Google Scholar 

  16. Lee, J., Crampton, K. T., Tallarida, N. & Apkarian, V. A. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature 568, 78–82 (2019).

    CAS  PubMed  Google Scholar 

  17. van Schrojenstein Lantman, E. M., Deckert-Gaudig, T., Mank, A. J. G., Deckert, V. & Weckhuysen, B. M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 7, 583–586 (2012).

    PubMed  Google Scholar 

  18. Herrero, E., Buller, L. J. & Abruña, H. D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101, 1897–1930 (2001).

    CAS  PubMed  Google Scholar 

  19. Lin, L. et al. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nat. Nanotechnol. 14, 354–361 (2019).

    CAS  PubMed  Google Scholar 

  20. Pan, M. et al. Model studies of heterogeneous catalytic hydrogenation reactions with gold. Chem. Soc. Rev. 42, 5002–5013 (2013).

    CAS  PubMed  Google Scholar 

  21. Kibler, L. A., Kleinert, M., Randler, R. & Kolb, D. M. Initial stages of Pd deposition on Au (hkl). Part I: Pd on Au (111). Surf. Sci. 443, 19–30 (1999).

    CAS  Google Scholar 

  22. Chen, C., Hayazawa, N. & Kawata, S. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 5, 3312 (2014).

    PubMed  Google Scholar 

  23. Su, H. et al. Probing the local generation and diffusion of active oxygen species on a Pd/Au bimetallic surface by tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 142, 1341–1347 (2020).

    CAS  PubMed  Google Scholar 

  24. Lopez, N., Łodziana, Z., Illas, F. & Salmeron, M. When Langmuir is too simple: H2 dissociation on Pd(111) at high coverage. Phys. Rev. Lett. 93, 146103 (2004).

    PubMed  Google Scholar 

  25. Groß, A. & Dianat, A. Hydrogen dissociation dynamics on precovered Pd surfaces: Langmuir is still right. Phys. Rev. Lett. 98, 206107 (2007).

    PubMed  Google Scholar 

  26. Lauhon, L. J. & Ho, W. Direct observation of the quantum tunneling of single hydrogen atoms with a scanning tunneling microscope. Phys. Rev. Lett. 89, 079901 (2002).

    Google Scholar 

  27. Marshall, S. et al. Controlled selectivity for palladium catalysts using self-assembled monolayers. Nat. Mater. 9, 853–858 (2010).

    CAS  PubMed  Google Scholar 

  28. Abazari, R., Heshmatpour, F. & Balalaie, S. Pt/Pd/Fe trimetallic nanoparticle produced via reverse micelle technique: synthesis, characterization, and its use as an efficient catalyst for reductive hydrodehalogenation of aryl and aliphatic halides under mild conditions. ACS Catal. 3, 139–149 (2013).

    CAS  Google Scholar 

  29. de Pedro, Z. M., Casas, J. A., Gomez-Sainero, L. M. & Rodriguez, J. J. Hydrodechlorination of dichloromethane with a Pd/AC catalyst: reaction pathway and kinetics. Appl. Catal. B 98, 79–85 (2010).

    Google Scholar 

  30. Qian, X., Emory, S. R. & Nie, S. Anchoring molecular chromophores to colloidal gold nanocrystals: surface-enhanced Raman evidence for strong electronic coupling and irreversible structural locking. J. Am. Chem. Soc. 134, 2000–2003 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Coq, B., Ferrat, G. & Figueras, F. Conversion of chlorobenzene over palladium and rhodium catalysts of widely varying dispersion. J. Catal. 101, 434–445 (1986).

    CAS  Google Scholar 

  32. Stadler, J., Schmid, T. & Zenobi, R. Nanoscale chemical imaging using top-illumination tip-enhanced Raman spectroscopy. Nano Lett. 10, 4514–4520 (2010).

    CAS  PubMed  Google Scholar 

  33. Clavilier, J., Faure, R., Guinet, G. & Durand, R. Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes. J. Electroanal. Chem. 107, 205–209 (1979).

    Google Scholar 

  34. Weiss, E. A. et al. Si/SiO2-templated formation of ultrafast metal surfaces on glass, polymer, and solder supports: their use as substrates for self-assembled monolayers. Langmuir 23, 9686–9694 (2007).

    CAS  PubMed  Google Scholar 

  35. Zhang, Y.-J. et al. Probing the electronic structure of heterogeneous metal interfaces by transition metal shelled gold nanoparticle-enhanced Raman spectroscopy. J. Phys. Chem. C. 120, 20684–20691 (2016).

    CAS  Google Scholar 

  36. Gyr, L., Klute, F. D., Franzke, J. & Zenobi, R. Characterization of a nitrogen-based dielectric barrier discharge ionization source for mass spectrometry reveals factors important for soft ionization. Anal. Chem. 91, 6865–6871 (2019).

    CAS  PubMed  Google Scholar 

  37. Szczerbiński, J., Gyr, L., Kaeslin, J. & Zenobi, R. Plasmon-driven photocatalysis leads to products known from E-beam and X-ray-induced surface chemistry. Nano Lett. 18, 6740–6749 (2018).

    PubMed  Google Scholar 

  38. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    CAS  Google Scholar 

  39. Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2010).

    PubMed  Google Scholar 

  40. Carrasco, J., Klimeš, J. & Michaelides, A. The role of van der Waals forces in water adsorption on metals. J. Chem. Phys. 138, 024708 (2013).

    PubMed  Google Scholar 

  41. Berland, K. et al. van der Waals forces in density functional theory: a review of the vdW-DF method. Rep. Prog. Phys. 78, 066501 (2015).

    PubMed  Google Scholar 

  42. Klimeš, J., Bowler, D. R. & Michaelides, A. van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Google Scholar 

  43. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901 (2000).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the European Research Council program (grant number 741431—2DNanoSpec), the Natural Science Foundation of China (grant numbers 21925404, 21775127 and 21703181), the Fundamental Research Funds for the Central Universities (20720190044) and MOST (2019YFA0705402). L.-Q.Z. was financially supported by the Chinese Scholarship Council for a PhD student fellowship. H.Y. was financially supported by the Sino‐Swiss Science and Technology Cooperation program (grant number EG22‐122016). W.F. and J.O.R. are supported by the Swiss National Science Foundation (project number 175696.) We thank A. Rossi (ETH Zurich) and G. Cossu (ETH Zurich) for help with the XPS measurements. DFT computations were supported by the High-Performance Computing Team at ETH Zurich. H.Y. and L.-Q.Z. also thank A. Begley, J.B. Metternich, J. Szczerbińsky and J.A. van Bokhoven (all from ETH Zurich) for insightful discussions. H.Y. thanks W.-Q. Li (Xiamen University) for the coverage measurements.

Author information

Authors and Affiliations

Authors

Contributions

R.Z. and J.-F.L. supervised the project. L.-Q.Z. conceived of the ideas. L.-Q.Z. and H.Y. designed the experiments. H.Y., L.-Q.Z. and N.P. performed the experiments. W.F. and J.O.R. performed the DFT calculations. Y.-H.L. and L.-Q.Z. performed the TPD-MS experiments. G.G., H.-S.S. and B.R. contributed to the electrochemistry. H.Y., L.-Q.Z. and W.F. wrote the manuscript with the help of G.G. and H.Z. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Li-Qing Zheng, Jeremy O. Richardson, Jian-Feng Li or Renato Zenobi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–25, discussion and Tables 1 & 2.

Supplementary data 1

Cartesian coordinates (Å) for the optimized geometries in DFT calculations.

Source data

Source data Fig. 1

Cyclic voltammetry data and Raman signals for Fig. 1.

Source data Fig. 2

Raw spectrum data without background subtraction for Fig. 2.

Source data Fig. 3

Statistical source data for Fig. 3.

Source data Fig. 4

Statistical source data for Fig. 4.

Source data Fig. 5

Statistical source data for Fig. 5.

Source data Fig. 6

Statistical source data for Fig. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H., Zheng, LQ., Fang, W. et al. Nanometre-scale spectroscopic visualization of catalytic sites during a hydrogenation reaction on a Pd/Au bimetallic catalyst. Nat Catal 3, 834–842 (2020). https://doi.org/10.1038/s41929-020-00511-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-00511-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing