Tracking the formation, fate and consequence for catalytic activity of Pt single sites on CeO2

Abstract

Platinum single sites are highly attractive due to their high atom economy and can be generated on CeO2 by an oxidative high-temperature treatment. However, their location and activity are strongly debated. Furthermore, reaction-driven structural dynamics have not been addressed so far. In this study, we were able to evidence platinum-induced CeO2 surface restructuring, locate platinum single sites on CeO2 and track the variation of the active state under reaction conditions using a complementary approach of density functional theory calculations, in situ infrared spectroscopy, operando high-energy-resolution fluorescence detected X-ray absorption spectroscopy and catalytic CO (as well as C3H6 and CH4) oxidation. We found that the onset of CO oxidation is linked to the migration of platinum single sites from four-fold hollow sites to form small clusters containing a few platinum atoms. This demonstrates that operando studies on single sites are essential to assess their fate and the resulting catalytic properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Ex situ characterization of Pt-SS and Pt-NP.
Fig. 2: Concept of the Pt–CeO2 interaction.
Fig. 3: EXAFS analysis of the Pt-SS catalyst.
Fig. 4: Interaction of Pt-SS with gas phase adsorbates.
Fig. 5: Oxidation activity of Pt-SS and Pt-NP.
Fig. 6: Spectroscopic assignment of the active state.

Data availability

All data generated or analysed during this study are included in this published article (and its Supplementary Information files) or can be obtained from the authors upon reasonable request.

References

  1. 1.

    Deutschmann, O. & Grunwaldt, J.-D. Exhaust gas after treatment in mobile systems: status, challenges, and perspectives. Chem. Ing. Tech. 85, 595–617 (2013).

    CAS  Google Scholar 

  2. 2.

    Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Mitchell, S., Vorobyeva, E. & Pérez‐Ramírez, J. The multifaceted reactivity of single‐atom heterogeneous catalysts. Angew. Chem. Int. Ed. 57, 15316–15329 (2018).

    CAS  Google Scholar 

  4. 4.

    Beniya, A. & Higashi, S. Towards dense single-atom catalysts for future automotive applications. Nat. Catal. 2, 590–602 (2019).

    Google Scholar 

  5. 5.

    Lin, J. et al. Remarkable performance of Ir1/FeOX single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 135, 15314–15317 (2013).

    CAS  PubMed  Google Scholar 

  6. 6.

    Neitzel, A. et al. Atomically dispersed Pd, Ni, and Pt species in ceria-based catalysts: principal differences in stability and reactivity. J. Phys. Chem. C 120, 9852–9862 (2016).

    CAS  Google Scholar 

  7. 7.

    Therrien, A. J. et al. An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 1, 192–198 (2018).

    CAS  Google Scholar 

  8. 8.

    Chen, Z. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotechnol. 13, 702–707 (2018).

    CAS  PubMed  Google Scholar 

  9. 9.

    DeRita, L. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 18, 746–751 (2019).

    CAS  PubMed  Google Scholar 

  10. 10.

    Tauster, S. J., Fung, S. C. & Garten, R. L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 100, 170–175 (1978).

    CAS  Google Scholar 

  11. 11.

    Haller, G. L. & Resasco, D. E. Metal–support interaction: group VIII metals and reducible oxides. Adv. Catal. 36, 173–235 (1989).

    CAS  Google Scholar 

  12. 12.

    Nagai, Y. et al. Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide–support interaction. J. Catal. 242, 103–109 (2006).

    CAS  Google Scholar 

  13. 13.

    Farmer, J. A. & Campbell, C. T. Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science 329, 933–936 (2010).

    CAS  PubMed  Google Scholar 

  14. 14.

    Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    CAS  PubMed  Google Scholar 

  15. 15.

    Daelman, N., Capdevila-Cortada, M. & López, N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat. Mater. 18, 1215–1221 (2019).

    CAS  PubMed  Google Scholar 

  16. 16.

    Wang, X., Van Bokhoven, J. A. & Palagin, D. Atomically dispersed platinum on low index and stepped ceria surfaces: phase diagrams and stability analysis. Phys. Chem. Chem. Phys. 22, 28–38 (2019).

    PubMed  Google Scholar 

  17. 17.

    Dvořák, F. et al. Creating single-atom Pt-ceria catalysts by surface step decoration. Nat. Commun. 7, 10801 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Kunwar, D. et al. Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support. ACS Catal. 9, 3978–3990 (2019).

    CAS  Google Scholar 

  19. 19.

    Feng, Y. et al. Correlating DFT calculations with CO oxidation reactivity on Ga-doped Pt/CeO2 single-atom catalysts. J. Phys. Chem. C. 122, 22460–22468 (2018).

    CAS  Google Scholar 

  20. 20.

    Ke, J. et al. Strong local coordination structure effects on subnanometer PtOX clusters over CeO2 nanowires probed by low-temperature CO oxidation. ACS Catal. 5, 5164–5173 (2015).

    CAS  Google Scholar 

  21. 21.

    Sayle, T. X. T., Parker, S. C. & Catlow, C. R. A. Surface segregation of metal ions in cerium dioxide. J. Phys. Chem. 98, 13625–13630 (1994).

    CAS  Google Scholar 

  22. 22.

    Bruix, A. et al. Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum. Angew. Chem. Int. Ed. 53, 10525–10530 (2014).

    CAS  Google Scholar 

  23. 23.

    Kottwitz, M. et al. Local structure and electronic state of atomically dispersed Pt supported on nanosized CeO2. ACS Catal. 9, 8738–8748 (2019).

    CAS  Google Scholar 

  24. 24.

    Nie, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358, 1419–1423 (2017).

    CAS  PubMed  Google Scholar 

  25. 25.

    Tang, Y., Wang, Y.-G. & Li, J. Theoretical investigations of Pt1@CeO2 single-atom catalyst for CO oxidation. J. Phys. Chem. C. 121, 11281–11289 (2017).

    CAS  Google Scholar 

  26. 26.

    Bera, P. et al. Promoting effect of CeO2 in combustion synthesized Pt/CeO2 catalyst for CO oxidation. J. Phys. Chem. B 107, 6122–6130 (2003).

    CAS  Google Scholar 

  27. 27.

    Singh, P. & Hegde, M. S. Sonochemical synthesis of thermally stable hierarchical Ce1-xMxO2-δ (M = Pt or Pd, 0 ≤ x ≤ 0.10) nanocrystallites: redox properties and methanol electro-oxidation activity. Cryst. Growth Des. 10, 2995–3004 (2010).

    CAS  Google Scholar 

  28. 28.

    Hegde, M. S. & Bera, P. Noble metal ion substituted CeO2 catalysts: electronic interaction between noble metal ions and CeO2 lattice. Catal. Today 253, 40–50 (2015).

    CAS  Google Scholar 

  29. 29.

    Lee, J., Ryou, Y., Chan, X., Kim, T. J. & Kim, D. H. How Pt Interacts with CeO2 under the reducing and oxidizing environments at elevated temperature: the origin of improved thermal stability of Pt/CeO2 compared to CeO2. J. Phys. Chem. C 120, 25870–25879 (2016).

    CAS  Google Scholar 

  30. 30.

    Cargnello, M. et al. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 341, 771–773 (2013).

    CAS  PubMed  Google Scholar 

  31. 31.

    Bera, P. et al. Ionic dispersion of Pt over CeO2 by the combustion method: structural investigation by XRD, TEM, XPS, and EXAFS. Chem. Mater. 15, 2049–2060 (2003).

    CAS  Google Scholar 

  32. 32.

    Gatla, S. et al. Facile synthesis of high-surface area platinum-doped ceria for low temperature CO oxidation. Catal. Today 333, 105–112 (2019).

    CAS  Google Scholar 

  33. 33.

    Pereira-Hernández, X. I. et al. Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nat. Commun. 10, 1358 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Wang, H. et al. Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nat. Commun. 10, 3808 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Gänzler, A. M. et al. Tuning the structure of platinum particles on ceria in situ for enhancing the catalytic performance of exhaust gas catalysts. Angew. Chem. Int. Ed. 56, 13078–13082 (2017).

    Google Scholar 

  36. 36.

    Gorczyca, A. et al. Monitoring morphology and hydrogen coverage of nanometric Pt/γ-Al2O3 particles by in situ HERFD-XANES and quantum simulations. Angew. Chem. Int. Ed. 53, 12426–12429 (2014).

    CAS  Google Scholar 

  37. 37.

    Gänzler, A. M. et al. Operando spatially and time-resolved X-ray absorption spectroscopy and infrared thermography during oscillatory CO oxidation. J. Catal. 328, 216–224 (2015).

    Google Scholar 

  38. 38.

    Dessal, C. et al. Atmosphere-dependent stability and mobility of catalytic Pt single atoms and clusters on γ-Al2O3. Nanoscale 11, 6897–6904 (2019).

    CAS  PubMed  Google Scholar 

  39. 39.

    Ye, X. et al. Insight of the stability and activity of platinum single atoms on ceria. Nano Res. 12, 1401–1409 (2019).

    CAS  Google Scholar 

  40. 40.

    Brogan, M. S., Dines, T. J. & Cairns, J. A. Raman spectroscopic study of the Pt–CeO2 interaction in the Pt/Al2O3–CeO2 catalyst. J. Chem. Soc. Faraday Trans. 90, 1461–1466 (1994).

    CAS  Google Scholar 

  41. 41.

    Branda, M. M., Ferullo, R. M., Causà, M. & Illas, F. Relative stabilities of low index and stepped CeO2 surfaces from hybrid and GGA + U implementations of density functional theory. J. Phys. Chem. C. 115, 3716–3721 (2011).

    CAS  Google Scholar 

  42. 42.

    Ding, K. et al. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 350, 189–192 (2015).

    CAS  PubMed  Google Scholar 

  43. 43.

    Chen, A. et al. Structure of the catalytically active copper–ceria interfacial perimeter. Nat. Catal. 2, 334–341 (2019).

    CAS  Google Scholar 

  44. 44.

    Wang, Y. & Wöll, C. IR spectroscopic investigations of chemical and photochemical reactions on metal oxides: bridging the materials gap. Chem. Soc. Rev. 46, 1875–1932 (2017).

    CAS  PubMed  Google Scholar 

  45. 45.

    Gänzler, A. M. et al. Tuning the Pt/CeO2 interface by in situ variation of the Pt particle size. ACS Catal. 8, 4800–4811 (2018).

    Google Scholar 

  46. 46.

    Safonova, O. V. et al. Identification of CO adsorption sites in supported Pt catalysts using high-energy-resolution fluorescence detection X-ray spectroscopy. J. Phys. Chem. B 110, 16162–16164 (2006).

    CAS  PubMed  Google Scholar 

  47. 47.

    Singh, J. & van Bokhoven, J. A. Structure of alumina supported platinum catalysts of different particle size during CO oxidation using in situ IR and HERFD XAS. Catal. Today 155, 199–205 (2010).

    CAS  Google Scholar 

  48. 48.

    Lu, Y. et al. Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat. Catal. 2, 149–156 (2019).

    CAS  Google Scholar 

  49. 49.

    Lang, R. et al. Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 10, 234 (2019).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Lott, P., Dolcet, P., Casapu, M., Grunwaldt, J.-D. & Deutschmann, O. The effect of pre-reduction on the performance of Pd/Al2O3 and Pd/CeO2 catalysts during methane oxidation. Ind. Eng. Chem. Res. 58, 12561–12570 (2019).

    CAS  Google Scholar 

  51. 51.

    Cullis, C. F. & Willatt, B. M. Oxidation of methane over supported precious metal catalysts. J. Catal. 83, 267–285 (1983).

    CAS  Google Scholar 

  52. 52.

    Casapu, M. et al. Origin of the normal and inverse hysteresis behavior during CO oxidation over Pt/Al2O3. ACS Catal. 7, 343–355 (2017).

    CAS  Google Scholar 

  53. 53.

    Abedi, A., Hayes, R., Votsmeier, M. & Epling, W. S. Inverse hysteresis phenomena during CO and C3H6 oxidation over a Pt/Al2O3 catalyst. Catal. Lett. 142, 930–935 (2012).

    CAS  Google Scholar 

  54. 54.

    de Juan, A., Jaumot, J. & Tauler, R. Multivariate curve resolution (MCR). Solving the mixture analysis problem. Anal. Methods 6, 4964–4976 (2014).

    Google Scholar 

  55. 55.

    Jaumot, J., de Juan, A. & Tauler, R. MCR-ALS GUI 2.0: new features and applications. Chemometr. Intell. Lab. Syst. 140, 1–12 (2015).

    CAS  Google Scholar 

  56. 56.

    Voronov, A. et al. Multivariate curve resolution applied to in situ X-ray absorption spectroscopy data: an efficient tool for data processing and analysis. Anal. Chim. Acta 840, 20–27 (2014).

    CAS  PubMed  Google Scholar 

  57. 57.

    Parkinson, G. S. et al. Carbon monoxide-induced adatom sintering in a Pd–Fe3O4 model catalyst. Nat. Mater. 12, 724–728 (2013).

    CAS  PubMed  Google Scholar 

  58. 58.

    Kleist, W. & Grunwaldt, J.-D. High Output Catalyst Development in Heterogeneous Gas Phase Catalysis. In Modern Applications of High Throughput R&D in Heterogeneous Catalysis (eds Hagemeyer, A. & Volpe, A. F.) 357–371 (BENTHAM SCIENCE PUBLISHERS, 2014).

  59. 59.

    Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938).

    CAS  Google Scholar 

  60. 60.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  Google Scholar 

  61. 61.

    Grunwaldt, J.-D., Caravati, M., Hannemann, S. & Baiker, A. X-ray absorption spectroscopy under reaction conditions: suitability of different reaction cells for combined catalyst characterization and time-resolved studies. Phys. Chem. Chem. Phys. 6, 3037–3047 (2004).

    CAS  Google Scholar 

  62. 62.

    Bunău, O. & Joly, Y. Self-consistent aspects of X-ray absorption calculations. J. Phys. Condens. Matter 21, 345501 (2009).

    PubMed  Google Scholar 

  63. 63.

    Yan, H. et al. Atomic engineering of high-density isolated Co atoms on graphene with proximal-atom controlled reaction selectivity. Nat. Commun. 9, 3197 (2018).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Timoshenko, J., Lu, D., Lin, Y. & Frenkel, A. I. Supervised machine-learning-based determination of three-dimensional structure of metallic nanoparticles. J. Phys. Chem. Lett. 8, 5091–5098 (2017).

    PubMed  Google Scholar 

  65. 65.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  66. 66.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  67. 67.

    Bahn, S. R. & Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 4, 56–66 (2002).

    CAS  Google Scholar 

  68. 68.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  69. 69.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  70. 70.

    Wellendorff, J. et al. Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys. Rev. B 85, 235149 (2012).

    Google Scholar 

  71. 71.

    Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    CAS  Google Scholar 

  72. 72.

    Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Google Scholar 

  73. 73.

    Fairley, N. CasaXPS Manual 2.3.16: Introduction to XPS and AES (Casa Software, 2011).

Download references

Acknowledgements

F.M. (ITCP, KIT) thanks the “Fonds der Chemischen Industrie” (FCI) for financial support. J.J. and F.S. acknowledge support by the state of Baden-Württemberg through bwHPC (bwunicluster and JUSTUS, RV bw16G001 and bwl17D011). J.W. is grateful for a PhD fellowship, donated by the China Scholarship Council (CSC). The authors further thank the German Federal Ministry for Economic Affairs and Energy (BMWi: 19U15014B) and the French National Research Agency (ANR‐14‐CE22‐0011‐02) for financial support of the ORCA project within the DEUFRAKO program, the DFG for financial support (INST 121384/16-1, INST 121384/73-1, INST 121384/73-1) and DESY and ESRF for beamtime at the P65 and BM16 beamlines, respectively. We thank D. Zengel, P. Lott, G. Cavusoglu and D. Doronkin (ITCP/IKFT, KIT) for assistance during operando XAS and HERFD-XANES experiments. Furthermore, we acknowledge M. Stehle, A. Deutsch and J. Pesek (ITCP, KIT) for technical support with respect to catalyst preparation, characterization and testing as well as T. Bergfeldt (IAM-AWP, KIT) and H. Störmer (LEM, KIT) for ICP-OES analysis and HAADF-STEM, respectively. Finally, M. Rovezzi, A. Aguilar (BM16, ESRF), E. Welter, R. Nemausat and M. Herrmann (P65, DESY) are thanked for support during beamtime at the corresponding beamlines. We also thank A. Zitolo (Samba, SOLEIL) for fruitful discussion on XANES data calculations.

Author information

Affiliations

Authors

Contributions

F.M. performed the catalyst preparation, X-ray-based characterization, FEFF calculations, catalytic tests and wrote the paper. J.J. designed and performed the DFT calculations together with F.S. and wrote the corresponding text in the paper. J.W., Y.W. and C.W. conducted the UHV-FTIRS and XPS characterization and interpretation. A.G. was involved in the DRIFTS and HERFD-XAS experiments as well as catalyst preparation. P.D. performed further catalytic tests, the FDMNES calculations and helped in the FEFF calculations as well as the analysis of the EXAFS and HERFD-XANES data. M.C. and J.-D.G. designed the study and co-wrote the paper. All the authors contributed to the interpretation of the results and commented on the manuscript.

Corresponding author

Correspondence to Jan-Dierk Grunwaldt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion and methods (with interdispersed Supplementary Figs. 1–30 and Tables 1–13) and references.

Supplementary Data

Contains the CONTCAR files of the VASP calculations for all structures mentioned in the manuscript and Supplementary Information.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maurer, F., Jelic, J., Wang, J. et al. Tracking the formation, fate and consequence for catalytic activity of Pt single sites on CeO2. Nat Catal 3, 824–833 (2020). https://doi.org/10.1038/s41929-020-00508-7

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing