Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Current state and future perspectives of engineered and artificial peroxygenases for the oxyfunctionalization of organic molecules

Abstract

Peroxygenases are attractive biocatalysts for the selective introduction of oxygen into organic molecules under mild conditions with hydrogen peroxide as the oxygen source. In addition to the identification of primary peroxygenases, different classes of enzymes were shown to display promiscuous peroxygenase activity. Even though enzymes with peroxygenase activity are promising industrial biocatalysts, further optimization of their properties is required for their effective use in industrial applications. Here we give a comprehensive overview of enzymes with peroxygenase activity and review diverse strategies, including directed evolution, rational approaches and the assistance of small functional molecules to improve the expression, catalytic activity, substrate scope or selectivity of these promising enzymes. Furthermore, we discuss the exploration of modified or unnatural cofactors to design artificial peroxygenases for desired reactions. The rapidly expanding field of hydrogen peroxide-utilizing enzymes bears a great potential to provide biocatalysts for selective oxyfunctionalization chemistry, contributing to the development of environmentally friendly and sustainable oxidation processes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of the cofactor usage of natural enzymes with peroxygenase activity and artificial peroxyzymes.
Fig. 2: Selected examples of peroxygenation reactions catalysed by enzymes with peroxygenase activity.
Fig. 3: Catalytic mechanism of (per-)oxygenation reactions catalysed by haem-thiolate enzymes.
Fig. 4: Acid–base catalytic residues in the active site of haem-thiolate enzymes.
Fig. 5: Rational strategies for the engineering of P450 monooxygenases towards enhanced peroxygenase activity.

References

  1. 1.

    White, M. C. Adding aliphatic C–H bond oxidations to synthesis. Science 335, 807–809 (2012).

    PubMed  CAS  Google Scholar 

  2. 2.

    Piera, J. & Bäckvall, J. E. Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer — a biomimetic approach. Angew. Chem. Int. Ed. 47, 3506–3523 (2008).

    CAS  Google Scholar 

  3. 3.

    Muzart, J. Chromium-catalyzed oxidations in organic synthesis. Chem. Rev. 92, 113–140 (1992).

    CAS  Google Scholar 

  4. 4.

    Enthaler, S. & Company, A. Palladium-catalysed hydroxylation and alkoxylation. Chem. Soc. Rev. 40, 4912–4924 (2011).

    PubMed  CAS  Google Scholar 

  5. 5.

    Thiery, E., Chevrin, C., Le Bras, J., Harakat, D. & Muzart, J. Mechanistic insights into the palladiumII-catalyzed hydroxyalkoxylation of 2-allylphenols. J. Org. Chem. 72, 1859–1862 (2007).

    PubMed  CAS  Google Scholar 

  6. 6.

    Huybrechts, D. R. C., De Bruycker, L. & Jacobs, P. A. Oxyfunctionalization of alkanes with hydrogen peroxide on titanum silicalite. Nature 345, 240–242 (1990).

    CAS  Google Scholar 

  7. 7.

    Hage, R. & Lienke, A. Applications of transition-metal catalysts to textile and wood-pulp bleaching. Angew. Chem. Int. Ed. 45, 206–222 (2006).

    CAS  Google Scholar 

  8. 8.

    Hofrichter, M. & Ullrich, R. Oxidations catalyzed by fungal peroxygenases. Curr. Opin. Chem. Biol. 19, 116–125 (2014).

    PubMed  CAS  Google Scholar 

  9. 9.

    Ni, Y. et al. Peroxygenase-catalyzed oxyfunctionalization reactions promoted by the complete oxidation of methanol. Angew. Chem. Int. Ed. 55, 798–801 (2016).

    CAS  Google Scholar 

  10. 10.

    Kiebist, J. et al. A peroxygenase from Chaetomium globosum catalyzes the selective oxygenation of testosterone. ChemBioChem 18, 563–569 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  11. 11.

    Ishimaru, A. & Yamazaki, I. The carbon monoxide-binding hemoprotein reducible by hydrogen peroxide in microsomal fractions of pea seeds. J. Biol. Chem. 252, 199–204 (1977).

    PubMed  CAS  Google Scholar 

  12. 12.

    Hanano, A. et al. Plant seed peroxygenase is an original haem-oxygenase with an EF-hand calcium binding motif. J. Biol. Chem. 281, 33140–33151 (2006).

    PubMed  CAS  Google Scholar 

  13. 13.

    Fuchs, C. & Schwab, W. Epoxidation, hydroxylation and aromatization is catalyzed by a peroxygenase from Solanum lycopersicum. J. Mol. Catal. B Enzym. 96, 52–60 (2013).

    CAS  Google Scholar 

  14. 14.

    Tang, M. C., Fu, C. Y. & Tang, G. L. Characterization of SfmD as a haem peroxidase that catalyzes the regioselective hydroxylation of 3-methyltyrosine to 3-hydroxy-5-methyltyrosine in saframycin A biosynthesis. J. Biol. Chem. 287, 5112–5121 (2012).

    PubMed  CAS  Google Scholar 

  15. 15.

    Tuynman, A., Spelberg, J. L., Kooter, I. M., Schoemaker, H. E. & Wever, R. Enantioselective epoxidation and carbon-carbon bond cleavage catalyzed by Coprinus cinereus peroxidase and myeloperoxidase. J. Biol. Chem. 275, 3025–3030 (2000).

    PubMed  CAS  Google Scholar 

  16. 16.

    Ullrich, R., Nueske, J., Scheibner, K., Spantzel, J. & Hofrichter, M. Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl. Environ. Microbiol. 70, 4575–4581 (2004).

    PubMed  PubMed Central  CAS  Google Scholar 

  17. 17.

    Lee, D. S. et al. Substrate recognition and molecular mechanism of fatty acid hydroxylation by cytochrome P450 from Bacillus subtilis: crystallographic, spectroscopic, and mutational studies. J. Biol. Chem. 278, 9761–9767 (2003).

    PubMed  CAS  Google Scholar 

  18. 18.

    Burek, B. O., Bormann, S., Hollmann, F., Bloh, J. Z. & Holtmann, D. Hydrogen peroxide driven biocatalysis. Green. Chem. 21, 3232–3249 (2019).

    CAS  Google Scholar 

  19. 19.

    Seelbach, K., Van Deurzen, M. P. J., Van Rantwijk, F., Sheldon, R. A. & Kragl, U. Improvement of the total turnover number and space-time yield for chloroperoxidase catalyzed oxidation. Biotechnol. Bioeng. 55, 283–288 (1997).

    PubMed  CAS  Google Scholar 

  20. 20.

    Hofrichter, M. & Ullrich, R. Haem-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance. Appl. Microbiol. Biotechnol. 71, 276–288 (2006).

    PubMed  CAS  Google Scholar 

  21. 21.

    Harrison, J. E. & Schultz, J. Studies on the chlorinating activity of myeloperoxidase. J. Biol. Chem. 251, 1371–1374 (1976).

    PubMed  CAS  Google Scholar 

  22. 22.

    Joo, H., Lin, Z. & Arnold, F. H. Laboratory evolution of cytochrome P450 hydroxylation. Nature 399, 670–673 (1999).

    PubMed  CAS  Google Scholar 

  23. 23.

    Bissaro, B. et al. Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2. Nat. Chem. Biol. 13, 1123–1128 (2017). In this work, the ability of lytic polysaccharide monooxygenases to use H2O2 instead of O2 as an oxygen source for oxygenation reactions was demonstrated, which might be beneficial for their application in the enzymatic conversion of biomass.

    PubMed  CAS  Google Scholar 

  24. 24.

    Picard, M. et al. Metal-free bacterial haloperoxidases as unusual hydrolases: activation of H2O2 by the formation of peracetic acid. Angew. Chem. Int. Ed. 36, 1196–1199 (1997).

    CAS  Google Scholar 

  25. 25.

    Björkling, F., Godtfredsen, S. E. & Kirk, O. Lipase-mediated formation of peroxycarboxylic acids used in catalytic epoxidation of alkenes. J. Chem. Soc. Chem. Commun. 19, 1301–1303 (1990).

    Google Scholar 

  26. 26.

    Xu, G., Crotti, M., Saravanan, T., Kataja, K. M. & Poelarends, G. J. Enantiocomplementary epoxidation reactions catalyzed by an engineered cofactor-independent non-natural peroxygenase. Angew. Chem. Int. Ed. 59, 1–6 (2020).

    Google Scholar 

  27. 27.

    Cirino, P. C. & Arnold, F. H. A self-sufficient peroxide-driven hydroxylation biocatalyst. Angew. Chem. Int. Ed. 42, 3299–3301 (2003).

    CAS  Google Scholar 

  28. 28.

    Wang, Y., Lan, D., Durrani, R. & Hollmann, F. Peroxygenases en route to becoming dream catalysts. What are the opportunities and challenges? Curr. Opin. Chem. Biol. 37, 1–9 (2017).

    PubMed  Google Scholar 

  29. 29.

    Bormann, S., Gomez Baraibar, A., Ni, Y., Holtmann, D. & Hollmann, F. Specific oxyfunctionalisations catalysed by peroxygenases: opportunities, challenges and solutions. Catal. Sci. Technol. 5, 2038–2052 (2015).

    CAS  Google Scholar 

  30. 30.

    Morris, D. R. & Hager, L. P. Chloroperoxidase, I. Isolation and properties of the crystalline glycoprotein. J. Biol. Chem. 241, 1763–1768 (1966).

    PubMed  CAS  Google Scholar 

  31. 31.

    Morgan, J. A., Lu, Z. & Clark, D. S. Toward the development of a biocatalytic system for oxidation of p-xylene to terephthalic acid: oxidation of 1,4-benzenedimethanol. J. Mol. Catal. B Enzym. 18, 147–154 (2002).

    CAS  Google Scholar 

  32. 32.

    Morozov, A. N., Pardillo, A. D. & Chatfield, D. C. Chloroperoxidase-catalyzed epoxidation of cis-β-methylstyrene: NH–S hydrogen bonds and proximal helix dipole change the catalytic mechanism and significantly lower the reaction barrier. J. Phys. Chem. B 119, 14350–14363 (2015).

    PubMed  CAS  Google Scholar 

  33. 33.

    Rai, G. P., Sakai, S., Florez, A. M., Mogollon, L. & Hager, L. P. Directed evolution of chloroperoxidase for improved epoxidation and chlorination catalysis. Adv. Synth. Catal. 343, 638–645 (2001).

    CAS  Google Scholar 

  34. 34.

    Allain, E. J., Hager, L. P., Deng, L. & Jacobsen, E. N. Highly enantioselective epoxidation of disubstituted alkenes with hydrogen peroxide catalyzed by chloroperoxidase. J. Am. Chem. Soc. 115, 4415–4416 (1993).

    CAS  Google Scholar 

  35. 35.

    Andersson, M., Willetts, A. & Allenmark, S. Asymmetric sulfoxidation catalyzed by a vanadium-containing bromoperoxidase. J. Org. Chem. 62, 8455–8458 (1997).

    PubMed  CAS  Google Scholar 

  36. 36.

    Yi, X., Mroczko, M., Manoj, K. M., Wang, X. & Hager, L. P. Replacement of the proximal haem thiolate ligand in chloroperoxidase with a histidine residue. Proc. Natl Acad. Sci. USA 96, 12412–12417 (1999).

    PubMed  CAS  Google Scholar 

  37. 37.

    Sundaramoorthy, M., Terner, J. & Poulos, T. L. Stereochemistry of the chloroperoxidase active site: crystallographic and molecular-modeling studies. Chem. Biol. 5, 461–473 (1998).

    PubMed  CAS  Google Scholar 

  38. 38.

    Huang, X. & Groves, J. T. Oxygen activation and radical transformations in haem proteins and metalloporphyrins. Chem. Rev. 118, 2491–2553 (2018). Extensive overview of haem protein-mediated O2 activation processes and the reactivity of important iron−oxygen intermediates, elucidating fundamental mechanistic features of these metalloenzymes.

    PubMed  CAS  Google Scholar 

  39. 39.

    Matsunaga, I. & Shiro, Y. Peroxide-utilizing biocatalysts: structural and functional diversity of haem-containing enzymes. Curr. Opin. Chem. Biol. 8, 127–132 (2004).

    PubMed  CAS  Google Scholar 

  40. 40.

    Murphy, C. D. New frontiers in biological halogenation. J. Appl. Microbiol. 94, 539–548 (2003).

    PubMed  CAS  Google Scholar 

  41. 41.

    Green, M. T., Dawson, J. H. & Gray, H. B. Oxoiron(IV) in chloroperoxidase compound II is basic: implications for P450 chemistry. Science 304, 1653–1656 (2004).

    PubMed  CAS  Google Scholar 

  42. 42.

    Groves, J. T. Enzymatic C–H bond activation: using push to get pull. Nat. Chem. 6, 89–91 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  43. 43.

    Wang, X., Peter, S., Ullrich, R., Hofrichter, M. & Groves, J. T. Driving force for oxygen-atom transfer by haem-thiolate enzymes. Angew. Chem. Int. Ed. 52, 9238–9241 (2013).

    CAS  Google Scholar 

  44. 44.

    Yosca, T. H. et al. Iron(IV)hydroxide pKa and the role of thiolate ligation in C–H bond activation by cytochrome P450. Science 342, 825–829 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  45. 45.

    Wang, X., Ullrich, R., Hofrichter, M. & Groves, J. T. Haem-thiolate ferryl of aromatic peroxygenase is basic and reactive. Proc. Natl Acad. Sci. USA 112, 3686–3691 (2015).

    PubMed  CAS  Google Scholar 

  46. 46.

    Conesa, A. et al. Expression of the Caldariomyces fumago chloroperoxidase in Aspergillus niger and characterization of the recombinant enzyme. J. Biol. Chem. 276, 17635–17640 (2001).

    PubMed  CAS  Google Scholar 

  47. 47.

    Hrycay, E. G. & Bandiera, S. M. Monooxygenase, peroxidase and peroxygenase properties of cytochrome P450 enzymes. Adv. Exp. Med. Biol. 522, 71–89 (2012).

    CAS  Google Scholar 

  48. 48.

    Rydberg, P., Ryde, U. & Olsen, L. Sulfoxide, sulfur, and nitrogen oxidation and dealkylation by cytochrome P450. J. Chem. Theory Comput. 4, 1369–1377 (2008).

    PubMed  CAS  Google Scholar 

  49. 49.

    McKay, C. P. & Hartman, H. Hydrogen peroxide and the evolution of oxygenic photosynthesis. Orig. Life Evol. Biosph. 21, 157–163 (1991).

    PubMed  CAS  Google Scholar 

  50. 50.

    Meunier, B., de Visser, S. P. & Shaik, S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem. Rev. 104, 3947–3980 (2004).

    PubMed  CAS  Google Scholar 

  51. 51.

    Imai, M. et al. Uncoupling of the cytochrome P450cam monooxygenase reaction by a single mutation, threonine-252 to alanine or valine: a possible role of the hydroxy amino acid in oxygen activation. Proc. Natl Acad. Sci. USA 86, 7823–7827 (1989).

    PubMed  CAS  Google Scholar 

  52. 52.

    Yeom, H., Sligar, S. G., Li, H., Poulos, T. L. & Fulco, A. J. The role of Thr268 in oxygen activation of cytochrome P450 BM-3. Biochemistry 34, 14733–14740 (1995).

    PubMed  CAS  Google Scholar 

  53. 53.

    Munro, A. W., McLean, K. J., Grant, J. L. & Makris, T. M. Structure and function of the cytochrome P450 peroxygenase enzymes. Biochem. Soc. Trans. 46, 183–196 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  54. 54.

    Guengerich, F. P. & Munro, A. W. Unusual cytochrome P450 enzymes and reactions. J. Biol. Chem. 288, 17065–17073 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  55. 55.

    Matsunaga, I., Ueda, A., Fujiwara, N., Sumimoto, T. & Ichihara, K. Characterization of the ybdT gene product of Bacillus subtilis: novel fatty acid β-hydroxylating cytochrome P450. Lipids 34, 841–846 (1999).

    PubMed  CAS  Google Scholar 

  56. 56.

    Faponle, A. S., Quesne, M. G. & De Visser, S. P. Origin of the regioselective fatty-acid hydroxylation versus decarboxylation by a cytochrome P450 peroxygenase: what drives the reaction to biofuel production? Chem. Eur. J. 22, 5478–5483 (2016).

    PubMed  CAS  Google Scholar 

  57. 57.

    Matthews, S. et al. Catalytic determinants of alkene production by the cytochrome P450 peroxygenase OleTJE. J. Biol. Chem. 292, 5128–5143 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  58. 58.

    Ullrich, R. & Hofrichter, M. The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene. FEBS Lett. 579, 6247–6250 (2005).

    PubMed  CAS  Google Scholar 

  59. 59.

    Peter, S. et al. Selective hydroxylation of alkanes by an extracellular fungal peroxygenase. FEBS J. 278, 3667–3675 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  60. 60.

    Peter, S., Kinne, M., Ullrich, R., Kayser, G. & Hofrichter, M. Epoxidation of linear, branched and cyclic alkenes catalyzed by unspecific peroxygenase. Enzym. Microb. Technol. 52, 370–376 (2013).

    CAS  Google Scholar 

  61. 61.

    Bassanini, I. et al. Peroxygenase-catalyzed enantioselective sulfoxidations. Eur. J. Org. Chem. 2017, 7186–7189 (2017).

    CAS  Google Scholar 

  62. 62.

    Ullrich, R., Dolge, C., Kluge, M. & Hofrichter, M. Pyridine as novel substrate for regioselective oxygenation with aromatic peroxygenase from Agrocybe aegerita. FEBS Lett. 582, 4100–4106 (2008).

    PubMed  CAS  Google Scholar 

  63. 63.

    Martínez, A. T. et al. Search, engineering, and applications of new oxidative biocatalysts. Biofuels, Bioprod. Bioref. 8, 819–835 (2014).

    Google Scholar 

  64. 64.

    Wang, X., Peter, S., Kinne, M., Hofrichter, M. & Groves, J. T. Detection and kinetic characterization of a highly reactive haem-thiolate peroxygenase compound I. J. Am. Chem. Soc. 134, 12897–12900 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  65. 65.

    Olmedo, A. et al. Fatty acid chain shortening by a fungal peroxygenase. Chem. Eur. J. 23, 16985–16989 (2017).

    PubMed  CAS  Google Scholar 

  66. 66.

    Faiza, M., Huang, S., Lan, D. & Wang, Y. New insights on unspecific peroxygenases: superfamily reclassification and evolution. BMC Evol. Biol. 19, 76–95 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Vaaje-Kolstad, G. et al. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330, 219–222 (2010).

    PubMed  CAS  Google Scholar 

  68. 68.

    Vaaje-Kolstad, G., Horn, S. J., Van Aalten, D. M. F., Synstad, B. & Eijsink, V. G. H. The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J. Biol. Chem. 280, 28492–28497 (2005).

    PubMed  CAS  Google Scholar 

  69. 69.

    Horn, S. J., Vaaje-Kolstad, G., Westereng, B. & Eijsink, V. G. Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels 5, 45–57 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  70. 70.

    Busk, P. K. & Lange, L. Classification of fungal and bacterial lytic polysaccharide monooxygenases. BMC Genomics 16, 368–381 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Ciano, L., Davies, G. J., Tolman, W. B. & Walton, P. H. Bracing copper for the catalytic oxidation of C–H bonds. Nat. Catal. 1, 571–577 (2018).

    CAS  Google Scholar 

  72. 72.

    Quinlan, R. J. et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc. Natl Acad. Sci. USA 108, 15079–15084 (2011).

    PubMed  CAS  Google Scholar 

  73. 73.

    Hangasky, J. A., Iavarone, A. T. & Marletta, M. A. Reactivity of O2 versus H2O2 with polysaccharide monooxygenases. Proc. Natl Acad. Sci. USA 115, 4915–4920 (2018).

    PubMed  CAS  Google Scholar 

  74. 74.

    Wang, B. et al. QM/MM studies into the H2O2-dependent activity of lytic polysaccharide monooxygenases: evidence for the formation of a caged hydroxyl radical intermediate. ACS Catal. 8, 1346–1351 (2018).

    CAS  Google Scholar 

  75. 75.

    Martínez, A. T. et al. Oxidoreductases on their way to industrial biotransformations. Biotechnol. Adv. 35, 815–831 (2017).

    PubMed  Google Scholar 

  76. 76.

    Ranganathan, S., Zeitlhofer, S. & Sieber, V. Development of a lipase-mediated epoxidation process for monoterpenes in choline chloride-based deep eutectic solvents. Green. Chem. 19, 2576–2586 (2017).

    CAS  Google Scholar 

  77. 77.

    van de Velde, F., Könemann, L., van Rantwijk, F. & Sheldon, R. A. Enantioselective sulfoxidation mediated by vanadium-incorporated phytase: a hydrolase acting as a peroxidase. Chem. Commun. 29, 1891–1892 (1998).

    Google Scholar 

  78. 78.

    Aharoni, A. et al. The ‘evolvability’ of promiscuous protein functions. Nat. Genet. 37, 73–76 (2005).

    PubMed  CAS  Google Scholar 

  79. 79.

    Miura, Y. & Fulco, A. J. ω-1, ω-2 and ω-3 Hydroxylation of long-chain fatty acids, amides and alcohols by a soluble enzyme system from Bacillus megaterium. Biochim. Biophys. Acta 388, 305–317 (1975).

    PubMed  CAS  Google Scholar 

  80. 80.

    Capdevila, J. H. et al. The highly stereoselective oxidation of polyunsaturated fatty acids by cytochrome P450 BM-3. J. Biol. Chem. 271, 22663–22671 (1996).

    PubMed  CAS  Google Scholar 

  81. 81.

    Ost, T. W. B. et al. Rational re-design of the substrate binding site of flavocytochrome P450 BM3. FEBS Lett. 486, 173–177 (2000).

    PubMed  CAS  Google Scholar 

  82. 82.

    Cirino, P. C. & Arnold, F. H. Regioselectivity and activity of cytochrome P450 BM-3 and mutant F87A in reactions driven by hydrogen peroxide. Adv. Synth. Catal. 344, 932–937 (2002).

    CAS  Google Scholar 

  83. 83.

    Li, Q. S., Ogawa, J. & Shimizu, S. Critical role of the residue size at position 87 in H2O2-dependent substrate hydroxylation activity and H2O2 inactivation of cytochrome P450 BM-3. Biochem. Biophys. Res. Commun. 280, 1258–1261 (2001).

    PubMed  CAS  Google Scholar 

  84. 84.

    Ma, N. et al. Dual-functional small molecules for generating an efficient cytochrome P450 BM3 peroxygenase. Angew. Chem. Int. Ed. 57, 7628–7633 (2018). In this study, the P450 monooxygenase BM-3 was converted into a peroxygenase by the exogenous addition of a small molecule comprising a substrate mimicking part to activate the enzyme towards low-molecular-weight substrates and to anchor the molecule to the active site and an acid–base catalyst to enable H2O2-usage.

    CAS  Google Scholar 

  85. 85.

    Shoji, O. et al. A substrate-binding-state mimic of H2O2-dependent cytochrome P450 produced by one-point mutagenesis and peroxygenation of non-native substrates. Catal. Sci. Technol. 6, 5806–5811 (2016).

    CAS  Google Scholar 

  86. 86.

    Behera, R. K., Goyal, S. & Mazumdar, S. Modification of the haem active site to increase the peroxidase activity of thermophilic cytochrome P450: a rational approach. J. Inorg. Biochem. 104, 1185–1194 (2010).

    PubMed  CAS  Google Scholar 

  87. 87.

    Ozaki, S., Matsui, T. & Watanabe, Y. Conversion of myoglobin into a peroxygenase: a catalytic intermediate of sulfoxidation and epoxidation by the F43H/H64L mutant. J. Am. Chem. Soc. 119, 6666–6667 (1997).

    CAS  Google Scholar 

  88. 88.

    Kawakami, N., Shoji, O. & Watanabe, Y. Direct hydroxylation of primary carbons in small alkanes by wild-type cytochrome P450 BM3 containing perfluorocarboxylic acids as decoy molecules. Chem. Sci. 4, 2344–2348 (2013).

    CAS  Google Scholar 

  89. 89.

    Shoji, O. et al. Direct hydroxylation of benzene to phenol by cytochrome P450 BM3 triggered by amino acid derivatives. Angew. Chem. Int. Ed. 129, 10460–10465 (2017).

    Google Scholar 

  90. 90.

    Shoji, O., Kunimatsu, T., Kawakami, N. & Watanabe, Y. Highly selective hydroxylation of benzene to phenol by wild-type cytochrome P450 BM3 assisted by decoy molecules. Angew. Chem. Int. Ed. 52, 6606–6610 (2013).

    CAS  Google Scholar 

  91. 91.

    Kawakami, N., Shoji, O. & Watanabe, Y. Use of perfluorocarboxylic acids to trick cytochrome P450 BM3 into initiating the hydroxylation of gaseous alkanes. Angew. Chem. Int. Ed. 50, 5315–5318 (2011).

    CAS  Google Scholar 

  92. 92.

    Cong, Z. et al. Activation of wild-type cytochrome P450 BM3 by the next generation of decoy molecules: enhanced hydroxylation of gaseous alkanes and crystallographic evidence. ACS Catal. 5, 150–156 (2015).

    CAS  Google Scholar 

  93. 93.

    Haines, D. C. et al. Crystal structure of inhibitor-bound P450 BM-3 reveals open conformation of substrate access channel. Biochemistry 47, 3662–3670 (2008).

    PubMed  CAS  Google Scholar 

  94. 94.

    Shoji, O. et al. Hydrogen peroxide dependent monooxygenations by tricking the substrate recognition of cytochrome P450BSβ. Angew. Chem. Int. Ed. 46, 3656–3659 (2007). In this study, the usage of short-alkyl-chain carboxylic acids was explored to mimic the acid–base catalyst of the natural substrate of a fatty acid peroxygenase, broadening its substrate scope towards small non-natural substrates.

    CAS  Google Scholar 

  95. 95.

    Kluge, M., Ullrich, R., Scheibner, K. & Hofrichter, M. Stereoselective benzylic hydroxylation of alkylbenzenes and epoxidation of styrene derivatives catalyzed by the peroxygenase of Agrocybe aegerita. Green. Chem. 14, 440–446 (2012).

    CAS  Google Scholar 

  96. 96.

    Molina-Espeja, P., De Santos, P. G. & Alcalde, M. Directed evolution of unspecific peroxygenase from Agrocybe aegerita. Appl. Environ. Microbiol. 80, 3496–3507 (2014).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Ramirez-Escudero, M. et al. Structural insights into the substrate promiscuity of a laboratory-evolved peroxygenase. ACS Chem. Biol. 13, 3259–3268 (2018).

    PubMed  CAS  Google Scholar 

  98. 98.

    Molina-Espeja, P., Ma, S., Mate, D. M., Ludwig, R. & Alcalde, M. Tandem-yeast expression system for engineering and producing unspecific peroxygenase. Enzym. Microb. Technol. 73–74, 29–33 (2015).

    Google Scholar 

  99. 99.

    Molina-Espeja, P. et al. Synthesis of 1-naphthol by a natural peroxygenase engineered by directed evolution. ChemBioChem 17, 341–349 (2016).

    PubMed  CAS  Google Scholar 

  100. 100.

    Gomez De Santos, P. et al. Selective synthesis of the human drug metabolite 5′-hydroxypropranolol by an evolved self-sufficient peroxygenase. ACS Catal. 8, 4789–4799 (2018). Structure-guided evolution of the recently discovered unspecific peroxygenase AaeUPO for the synthesis of 5′-hydroxypropranolol with high enantioselectivity and reduced oxidative side reactions, making the use of radical scavengers redundant.

    CAS  Google Scholar 

  101. 101.

    Gomez de Santos, P. et al. Benchmarking of laboratory evolved unspecific peroxygenases for the synthesis of human drug metabolites. Tetrahedron 75, 1827–1831 (2019).

    CAS  Google Scholar 

  102. 102.

    Poraj-Kobielska, M. et al. Immobilization of unspecific peroxygenases (EC 1.11.2.1) in PVA/PEG gel and hollow fiber modules. Biochem. Eng. J. 98, 144–150 (2015).

    CAS  Google Scholar 

  103. 103.

    Peng, L. et al. Peroxygenase based sensor for aromatic compounds. Biosens. Bioelectron. 26, 1432–1436 (2010).

    PubMed  CAS  Google Scholar 

  104. 104.

    Peng, L. et al. Bioelectrocatalytic properties of Agrocybe aegerita peroxygenase. Electrochim. Acta 55, 7809–7813 (2010).

    CAS  Google Scholar 

  105. 105.

    Karich, A., Scheibner, K., Ullrich, R. & Hofrichter, M. Exploring the catalase activity of unspecific peroxygenases and the mechanism of peroxide-dependent haem destruction. J. Mol. Catal. B Enzym. 134, 238–246 (2016).

    CAS  Google Scholar 

  106. 106.

    Valderrama, B., Ayala, M. & Vazquez-Duhalt, R. Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chem. Biol. 9, 555–565 (2002).

    PubMed  CAS  Google Scholar 

  107. 107.

    Ayala, M., Batista, C. V. & Vazquez-Duhalt, R. Haem destruction, the main molecular event during the peroxide-mediated inactivation of chloroperoxidase from Caldariomyces fumago. J. Biol. Inorg. Chem. 16, 63–68 (2011).

    PubMed  CAS  Google Scholar 

  108. 108.

    Hernández-Ruiz, J., Arnao, M. B., Hiner, A. N. P., García-Cánovas, F. & Acosta, M. Catalase-like activity of horseradish peroxidase: relationship to enzyme inactivation by H2O2. Biochem. J. 354, 107–114 (2001).

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Vidal-Limón, A., Águila, S., Ayala, M., Batista, C. V. & Vazquez-Duhalt, R. Peroxidase activity stabilization of cytochrome P450 BM3 by rational analysis of intramolecular electron transfer. J. Inorg. Biochem. 122, 18–26 (2013).

    PubMed  Google Scholar 

  110. 110.

    Albertolle, M. E. & Peter Guengerich, F. The relationships between cytochromes P450 and H2O2: production, reaction, and inhibition. J. Inorg. Biochem. 186, 228–234 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  111. 111.

    Gonzalez-Perez, D., Garcia-Ruiz, E., Ruiz-Dueñas, F. J., Martinez, A. T. & Alcalde, M. Structural determinants of oxidative stabilization in an evolved versatile peroxidase. ACS Catal. 4, 3891–3901 (2014).

    CAS  Google Scholar 

  112. 112.

    Ogola, H. J. O. et al. Enhancement of hydrogen peroxide stability of a novel Anabaena sp. DyP-type peroxidase by site-directed mutagenesis of methionine residues. Appl. Microbiol. Biotechnol. 87, 1727–1736 (2010).

    PubMed  CAS  Google Scholar 

  113. 113.

    Opperman, D. J. & Reetz, M. T. Towards practical Baeyer–Villiger-monooxygenases: design of cyclohexanone monooxygenase mutants with enhanced oxidative stability. ChemBioChem 11, 2589–2596 (2010).

    PubMed  CAS  Google Scholar 

  114. 114.

    Ziegler, D. Recent studies on the structure and function of multisubstrate flavin-containing monooxygenases. Annu. Rev. Pharmacol. Toxicol. 33, 179–199 (1993).

    PubMed  CAS  Google Scholar 

  115. 115.

    de Gonzalo, G. & Fraaije, M. W. Recent developments in flavin-based catalysis. ChemCatChem 5, 403–415 (2013).

    Google Scholar 

  116. 116.

    De Gonzalo, G., Smit, C., Jin, J., Minnaard, A. J. & Fraaije, M. W. Turning a riboflavin-binding protein into a self-sufficient monooxygenase by cofactor redesign. Chem. Commun. 47, 11050–11052 (2011). The combination of N-alkylated flavins able to form hydroperoxyflavins and oxygenate organic substrates, with a flavin-binding protein introducing enantioselectivity, yielded an artificial peroxygenase, which can help with elucidating requirements for the cofactor and protein scaffold.

    Google Scholar 

  117. 117.

    Massey, V. Activation of molecular oxygen by flavins and flavoproteins. J. Biol. Chem. 269, 22459–22462 (1994).

    PubMed  CAS  Google Scholar 

  118. 118.

    Kemal, C. & Bruice, T. C. Simple synthesis of a 4a-hydroperoxy adduct of a 1,5-dihydroflavine: preliminary studies of a model for bacterial luciferase. Proc. Natl Acad. Sci. USA 73, 995–999 (1976).

    PubMed  CAS  Google Scholar 

  119. 119.

    Kemal, C., Chan, T. W. & Bruice, T. C. Chemiluminescent reactions and electrophilic oxygen donating ability of 4a-hydroperoxyflavins: general synthetic method for the preparation of N5-alkyl-1,5-dihydroflavins. Proc. Natl Acad. Sci. USA 74, 405–409 (1977).

    PubMed  CAS  Google Scholar 

  120. 120.

    Smit, C., Fraaije, M. W. & Minnaard, A. J. Reduction of carbon–carbon double bonds using organocatalytically generated diimide. J. Org. Chem. 73, 9482–9485 (2008).

    PubMed  CAS  Google Scholar 

  121. 121.

    Hayashi, T. et al. Blue myoglobin reconstituted with an iron porphycene shows extremely high oxygen affinity. J. Am. Chem. Soc. 124, 11226–11227 (2002).

    PubMed  CAS  Google Scholar 

  122. 122.

    Oohora, K., Kihira, Y., Mizohata, E., Inoue, T. & Hayashi, T. C(sp3)–H bond hydroxylation catalyzed by myoglobin reconstituted with manganese porphycene. J. Am. Chem. Soc. 135, 17282–17285 (2013).

    PubMed  CAS  Google Scholar 

  123. 123.

    Oohora, K. et al. Manganese(v) porphycene complex responsible for inert C–H bond hydroxylation in a myoglobin matrix. J. Am. Chem. Soc. 139, 18460–18463 (2017).

    PubMed  CAS  Google Scholar 

  124. 124.

    Leone, L. et al. Mn–Mimochrome VI*a: an artificial metalloenzyme with peroxygenase activity. Front. Chem. 6, (2018).

  125. 125.

    Caserta, G. et al. Enhancement of peroxidase activity in artificial mimochrome vi catalysts through rational design. ChemBioChem 19, 1823–1826 (2018).

    PubMed  CAS  Google Scholar 

  126. 126.

    Nastri, F. et al. Haemoprotein models based on a covalent helix–haem–helix sandwich: design, synthesis, and characterization. Angew. Chem. Int. Ed. Engl. 3, 340–349 (1997).

    CAS  Google Scholar 

  127. 127.

    Lombardi, A. et al. Design of a new mimochrome with unique topology. Chem. Eur. J. 9, 5643–5654 (2003).

    PubMed  CAS  Google Scholar 

  128. 128.

    Nastri, F. et al. A haem-peptide metalloenzyme mimetic with natural peroxidase-like activity. Chem. Eur. J. 17, 4444–4453 (2011).

    PubMed  CAS  Google Scholar 

  129. 129.

    Van De Velde, F., Arends, I. W. C. E. & Sheldon, R. A. Biocatalytic and biomimetic oxidations with vanadium. J. Inorg. Biochem. 80, 81–89 (2000).

    PubMed  Google Scholar 

  130. 130.

    Fernández-Gacio, A., Codina, A., Fastrez, J., Riant, O. & Soumillion, P. Transforming carbonic anhydrase into epoxide synthase by metal exchange. ChemBioChem 7, 1013–1016 (2006).

    PubMed  Google Scholar 

  131. 131.

    Fujieda, N. et al. A well-defined osmium-cupin complex: hyperstable artificial osmium peroxygenase. J. Am. Chem. Soc. 139, 5149–5155 (2017). This work shows an example of the application of a robust protein scaffold providing regioselectivity together with osmium complexed by well-exposed histidine residues to generate a thermostable artificial peroxygenase.

    PubMed  CAS  Google Scholar 

  132. 132.

    Carey, J. R. et al. A site-selective dual anchoring strategy for artificial metalloprotein design. J. Am. Chem. Soc. 126, 10812–10813 (2004).

    PubMed  CAS  Google Scholar 

  133. 133.

    Garner, D. K., Liang, L., Barrios, D. A., Zhang, J. L. & Lu, Y. The important role of covalent anchor positions in tuning catalytic properties of a rationally designed Mnsalen-containing metalloenzyme. ACS Catal. 1, 1083–1089 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  134. 134.

    Linde, D. et al. Two new unspecific peroxygenases from heterologous expression of fungal genes in Escherichia coli. Appl. Environ. Microbiol. 86, 1–16 (2020).

    Google Scholar 

  135. 135.

    Carro, J. et al. Modulating fatty acid epoxidation vs hydroxylation in a fungal peroxygenase. ACS Catal. 9, 6234–6242 (2019).

    CAS  Google Scholar 

  136. 136.

    Gumulya, Y. et al. Engineering highly functional thermostable proteins using ancestral sequence reconstruction. Nat. Catal. 1, 878–888 (2018). An inspiring example how ancestral sequence reconstruction can provide a tool to obtain enzymes with improved properties like enhanced thermostability.

    CAS  Google Scholar 

  137. 137.

    Ander, P. & Marzullo, L. Sugar oxidoreductases and veratryl alcohol oxidase as related to lignin degradation. J. Biotechnol. 53, 115–131 (1997).

    PubMed  CAS  Google Scholar 

  138. 138.

    Kirk, T. K. & Farrell, R. L. Enzymatic ‘combustion’: the microbial degradation of lignin. Ann. Rev. Microbiol. 41, 465–505 (1987).

    CAS  Google Scholar 

  139. 139.

    Hollmann, F. et al. Formate oxidase (FOx) from Aspergillus oryzae: one catalyst enables diverse H2O2-dependent biocatalytic oxidation reactions. Angew. Chem. Int. Ed. 58, 7873–7877 (2019).

    Google Scholar 

  140. 140.

    Willot, S. J. P. et al. Expanding the spectrum of light-driven peroxygenase reactions. ACS Catal. 9, 890–894 (2019).

    PubMed  CAS  Google Scholar 

  141. 141.

    Horst, A. E. W. et al. Electro-enzymatic hydroxylation of ethylbenzene by the evolved unspecific peroxygenase of Agrocybe aegerita. J. Mol. Catal. B Enzym. 133, S137–S142 (2016).

    Google Scholar 

  142. 142.

    Wu, S. et al. Highly regio- and enantioselective multiple oxy- and amino-functionalizations of alkenes by modular cascade biocatalysis. Nat. Commun. 7, 11917 (2016). Elegant design of four enzyme modules comprising two to three enzymes each and stable starting and end products, which can be combined in various ways to yield enzyme cascades converting alkenes to hydroxyacids, aminoalcohols or aminoacids.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Netherlands Organization of Scientific Research (VICI grant 724.016.002), the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. 242293, and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska–Curie grant agreement no. 722390.

Author information

Affiliations

Authors

Contributions

M.-C.S. examined data for the article, wrote the manuscript and prepared the figures. Both M.-C.S. and G.J.P. contributed to the discussion, reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Gerrit J. Poelarends.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sigmund, MC., Poelarends, G.J. Current state and future perspectives of engineered and artificial peroxygenases for the oxyfunctionalization of organic molecules. Nat Catal 3, 690–702 (2020). https://doi.org/10.1038/s41929-020-00507-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing