Superelectrophilic aluminium(iii)–ion pairs promote a distinct reaction path for carbonyl–olefin ring-closing metathesis

Abstract

Catalytic carbonyl–olefin metathesis reactions represent powerful synthetic strategies for alkene formation. Successful approaches for carbonyl–olefin ring-closing, ring-opening and cross metathesis have been developed in recent years, but current limitations hamper the generality of these transformations. Stronger, more efficient catalytic systems are needed to further broaden the scope of these transformations while they prevent undesired reaction pathways. Here we report the development of an aluminium-based heterobimetallic ion pair as a superior catalyst that promotes carbonyl–olefin ring-closing metathesis via a distinct reaction mechanism and allows access to six- and seven-membered rings, which suffer from low yields and poor conversion under previously reported conditions. Mechanistic investigations support a distinct reaction profile in which two productive reaction pathways competitively form metathesis products. These insights are expected to have important implications in the catalyst design and development for carbonyl–olefin metathesis and enable future advances to ultimately expand the synthetic utility of these transformations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Scaffolds accessible via catalytic carbonyl–olefin metathesis.
Fig. 2: Superelectrophilic ion pairs are strong Lewis acids for the carbonyl–olefin metathesis of six-membered rings.
Fig. 3: Reaction scope of Al(iii)–ion pairs as superelectrophilic catalysts for metathesis.
Fig. 4: Comparison of rates of product formation.
Fig. 5: Carbonyl–ene product forms reversibly.
Fig. 6: Two potential pathways for carbonyl–olefin metathesis of medium-sized rings.
Fig. 7: Kinetic isotope studies.
Fig. 8: Mechanistic hypothesis.

Data availability

Experimental data as well as 1H and 13C NMR spectra for all the new compounds prepared in the course of these studies are provided in the Supplementary Information. Additional information available as part of the Supplementary Information files include synthetic procedures and details relevant to the reaction optimization. 1H NMR spectroscopy files used for kinetic experiments and other raw data that support the findings of this paper are available from the corresponding author upon reasonable request.

References

  1. 1.

    Jones, G.II, Schwartz, S. B. & Marton, M. T. Regiospecific thermal cleavage of some oxetan photoadducts: carbonyl-olefin metathesis in sequential photochemical and thermal steps. J. Chem. Soc. Chem. Commun. 1973, 374–375 (1973).

    Google Scholar 

  2. 2.

    Jones, G.II, Acquadro, M. A. & Carmody, M. A. Long-chain enals via carbonyl-olefin metathesis. An application in pheromone synthesis. J. Chem. Soc. Chem. Commun. 1975, 206–207 (1975).

    Google Scholar 

  3. 3.

    Carless, H. A. J. & Trivedi, H. S. New ring expansion reaction of 2-t-butyloxetans. J. Chem. Soc. Chem. Commun. 1979, 382–383 (1979).

    Google Scholar 

  4. 4.

    D’Auria, M., Racioppi, R. & Viggiani, L. Paternò–Büchi reaction between furan and heterocyclic aldehydes: oxetane formation vs. metathesis. Photochem. Photobiol. Sci. 9, 1134–1138 (2010).

    PubMed  Google Scholar 

  5. 5.

    Pérez-Ruiz, R., Gil, S. & Miranda, M. A. Stereodifferentiation in the photochemical cycloreversion of diastereomeric methoxynaphthalene–oxetane dyads. J. Org. Chem. 70, 1376–1381 (2005).

    PubMed  Google Scholar 

  6. 6.

    Pérez-Ruiz, R., Miranda, M. A., Alle, R., Meerholz, K. & Griesbeck, A. G. An efficient carbonyl–alkene metathesis of bicyclic oxetanes: photoinduced electron transfer reduction of the Paternò–Büchi adducts from 2,3-dihydrofuran and aromatic aldehydes. Photochem. Photobiol. Sci. 5, 51–55 (2006).

    PubMed  Google Scholar 

  7. 7.

    Valiulin, R. A. & Kutateladze, A. G. Harvesting the strain installed by a Paternò–Büchi step in a synthetically useful way: high-yielding photoprotolytic oxametathesis in polycyclic systems. Org. Lett. 11, 3886–3889 (2009).

    CAS  PubMed  Google Scholar 

  8. 8.

    Valiulin, R. A., Arisco, T. M. & Kutateladze, A. G. Double-tandem [4π+2π]·[2π+2π]·[4π+2π]·[2π+2π] synthetic sequence with protoprotolytic oxametathesis and photoepoxidation in the chromone series. J. Org. Chem. 76, 1319–1332 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Valiulin, R. A., Arisco, T. M. & Kutateladze, A. G. Photoinduced intramolecular cyclopentanation vs photoprotolytic oxametathesis in polycyclic alkenes outfitted with conformationally constrained aroylmethyl chromophores. J. Org. Chem. 78, 2012–2025 (2013).

    CAS  PubMed  Google Scholar 

  10. 10.

    Fu, G. C. & Grubbs, R. H. Synthesis of cycloalkenes via alkylidene-mediated olefin metathesis and carbonyl olefination. J. Am. Chem. Soc. 115, 3800–3801 (1993).

    CAS  Google Scholar 

  11. 11.

    Schopov, I. & Jossifov, C. A carbonyl–olefin exchange reaction—new route to polyconjugated polymers. 1. A new synthesis of polyphenylacetylene. Makromol. Chem. Rapid Commun. 4, 659–662 (1983).

    Google Scholar 

  12. 12.

    Soicke, A., Slavov, N., Neudörfl, J.-M. & Schmalz, H.-G. Metal-free intramolecular carbonyl–olefin metathesis of ortho-prenylaryl ketones. Synlett 17, 2487–2490 (2011).

    Google Scholar 

  13. 13.

    van Schaik, H.-P., Vijn, R.-J. & Bickelhaupt, F. Oxidation of metal-coordinated thioethers with dimethyldioxirane—a new stereoselective synthesis of chiral sulfoxides. Angew. Chem. Int. Ed. Engl. 33, 1611–1612 (1994).

    Google Scholar 

  14. 14.

    Jossifov, C., Kalinova, R. & Demonceau, A. Carbonyl olefin metathesis. Chim. Oggi 26, 85–87 (2008).

    CAS  Google Scholar 

  15. 15.

    Griffith, A. K., Vanos, C. M. & Lambert, T. H. Organocatalytic carbonyl–olefin metathesis. J. Am. Chem. Soc. 134, 18581–18584 (2012).

    CAS  PubMed  Google Scholar 

  16. 16.

    Hong, X., Liang, Y., Griffith, A. K., Lambert, T. H. & Houk, K. N. Distortion-accelerated cycloadditions and strain-release-promoted cycloreversions in the organocatalytic carbonyl–olefin metathesis. Chem. Sci. 5, 471–475 (2014).

    CAS  Google Scholar 

  17. 17.

    Zhang, Y., Jermaks, J., MacMillan, S. N. & Lambert, T. H. Synthesis of 2H-chromenes via hydrazine-catalysed ring-closing carbonyl–olefin metathesis. ACS Catal. 9, 9259–9264 (2019).

    CAS  Google Scholar 

  18. 18.

    Ludwig, J. R. & Schindler, C. S. Lewis acid catalysed carbonyl–olefin metathesis. Synlett 28, 1501–1509 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Lambert, T. H. Development of a hydrazine-catalysed carbonyl–olefin metathesis reaction. Synlett 30, 1954–1965 (2019).

    CAS  Google Scholar 

  20. 20.

    Ludwig, J. R., Zimmerman, P. M., Gianino, J. B. & Schindler, C. S. Iron(iii)-catalysed carbonyl–olefin metathesis. Nature 533, 374–379 (2016).

    CAS  PubMed  Google Scholar 

  21. 21.

    McAtee, C. M., Riehl, P. S. & Schindler, C. S. Polycyclic aromatic hydrocarbons via iron(iii)-catalysed carbonyl–olefin metathesis. J. Am. Chem. Soc. 139, 2960–2963 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Ludwig, J. R. et al. Mechanistic investigations of the iron(iii)-catalysed carbonyl–olefin metathesis reaction. J. Am. Chem. Soc. 139, 10832–10842 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Groso, E. J. et al. 3-Aryl-2,5-dihydropyrroles via catalytic carbonyl–olefin metathesis. ACS Catal. 8, 2006–2011 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Albright, H. et al. GaCl3-catalysed ring-opening carbonyl–olefin metathesis. Org. Lett. 20, 4954–4958 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Riehl, P. S. & Nasrallah, D. J. & Schindler, C. S. Catalytic, transannular reactions. Chem. Sci. https://doi.org/10.1039/C9SC03716K (2019).

  26. 26.

    Ma, L. et al. FeCl3-catalysed ring-closing carbonyl–olefin metathesis. Angew. Chem. Int. Ed. 55, 10410–10413 (2016).

    CAS  Google Scholar 

  27. 27.

    Hanson, C. S., Psaltakis, M. C., Cortes, J. J. & Devery, J. J. III Catalyst behavior in metal-catalysed carbonyl–olefin metathesis. J. Am. Chem. Soc. 141, 11870–11880 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Naidu, V. R., Bah, J. & Franzén, J. Direct organocatalytic oxo-metathesis, a trans-selective carbocation-catalysed olefination of aldehydes. Eur. J. Org. Chem. 2015, 1834–1839 (2015).

    Google Scholar 

  29. 29.

    Ni, S. & Franzén, J. Carbocation catalysed ring closing aldehyde–olefin metathesis. Chem. Commun. 54, 12982–12985 (2018).

    CAS  Google Scholar 

  30. 30.

    Tran, U. P. N., Oss, G., Pace, D. P., Ho, J. & Nguyen, T. V. Tropylium-promoted carbonyl–olefin metathesis reactions. Chem. Sci. Transf. 9, 5145–5151 (2018).

    CAS  Google Scholar 

  31. 31.

    Catti, L. & Tiefenbacher, K. Brønsted acid-catalysed carbonyl–olefin metathesis inside a self-assembled supramolecular host. Angew. Chem. Int. Ed. 57, 14589–14592 (2018).

    CAS  Google Scholar 

  32. 32.

    Zhu, Y., Rebek, J. Jr & Yu, Y. Cyclizations catalysed inside a hexameric resorcinarene capsule. Chem. Commun. 55, 3573–3577 (2019).

    CAS  Google Scholar 

  33. 33.

    Djurovic, A. et al. Synthesis of medium-sized carbocycles by gallium-catalysed tandem carbonyl–olefin metathesis/transfer hydrogenation. Org. Lett. 21, 8132–8137 (2019).

    CAS  PubMed  Google Scholar 

  34. 34.

    Ludwig, J. R. et al. Interrupted carbonyl–olefin metathesis via oxygen atom transfer. Science 361, 1363–1369 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Albright, H. et al. Catalytic carbonyl–olefin metathesis of aliphatic ketones: iron(iii) homo-dimers as Lewis acidic superelectrophiles. J. Am. Chem. Soc. 141, 1690–1700 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Olah, G. A. Superelectrophiles. Angew. Chem. Int. Ed. Engl. 32, 767–788 (1993).

    Google Scholar 

  37. 37.

    Olah, G. A. & Klumpp, D. A. Superelectrophiles and Their Chemistry (Wiley-VCH, 2007).

  38. 38.

    Negishi, E. Principle of activation of electrophiles by electrophiles through dimeric association—two are better than one. Chem. Eur. J. 5, 411–420 (1999).

    CAS  Google Scholar 

  39. 39.

    Means, N. C., Means, C. M., Bott, S. G. & Atwood, J. L. Interaction of AlCl3 with tetrahydrofuran. Formation and crystal structure of [AlCl2(THF)4][AlCl4]. Inorg. Chem. 26, 1466–1468 (1987).

    CAS  Google Scholar 

  40. 40.

    Tomifuji, R., Maeda, K., Takahashi, T., Kurahashi, T. & Matsubara, S. FeCl3 as an ion-pairing Lewis acid catalyst. Formation of highly Lewis acidic FeCl2+ and thermodynamically stable FeCl4 to catalyse the aza-Diels–Alder reaction with high turnover frequency. Org. Lett. 20, 7474–7477 (2018).

    CAS  PubMed  Google Scholar 

  41. 41.

    Denmark, S. E., Eklov, B. M., Yao, P. J. & Eastgate, M. D. On the mechanism of Lewis base catalysed aldol addition reactions: kinetic and spectroscopic investigations using rapid-injection NMR. J. Am. Chem. Soc. 131, 11770–11787 (2009).

    CAS  PubMed  Google Scholar 

  42. 42.

    Stephan, D. W. & Erker, G. Frustrated Lewis pair chemistry: development and perspectives. Angew. Chem. Int. Ed. 54, 6400–6441 (2015).

    CAS  Google Scholar 

  43. 43.

    Welch, G. C., San Juan, R. R., Masuda, J. D. & Stephan, D. W. Reversible, metal-free hydrogen activation. Science 314, 1124–1126 (2006).

    CAS  Google Scholar 

  44. 44.

    Hamilton, G. L., Kang, E. J., Mba, M. & Toste, F. D. A powerful chiral counteranion strategy for asymmetric transition metal catalysis. Science 317, 496–499 (2007).

    CAS  PubMed  Google Scholar 

  45. 45.

    Shimizu, Y., Shi, S.-L., Usuda, H., Kanai, M. & Shibasaki, M. Catalytic asymmetric total synthesis of ent-hyperforin. Angew. Chem. Int. Ed. 49, 1103–1106 (2010).

    CAS  Google Scholar 

  46. 46.

    Vaidya, T., Cheng, R., Carlsen, P. N., Frontier, A. J. & Eisenberg, R. Cationic cyclizations and rearrangements promoted by a heterogeneous gold catalyst. Org. Lett. 16, 800–803 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Tran, U. P. N. et al. Carbonyl–olefin metathesis catalysed by molecular iodine. ACS Catal. 9, 912–919 (2019).

    CAS  Google Scholar 

  48. 48.

    Beck, W. & Sünkel, K. Metal complexes of weakly coordinating anions. Precursors of strong cationic organometallic Lewis acids. Chem. Rev. 88, 1405–1421 (1988).

    CAS  Google Scholar 

  49. 49.

    Strauss, S. H. The search for larger and more weakly coordinating anions. Chem. Rev. 93, 927–942 (1993).

    CAS  Google Scholar 

  50. 50.

    Schottel, B. L. et al. Anion–π interactions as controlling elements in self-assembly reactions of Ag(i) complexes with π-acidic aromatic rings. J. Am. Chem. Soc. 128, 5895–5912 (2006).

    CAS  PubMed  Google Scholar 

  51. 51.

    Mayfield, H. G. & Bull, W. E. Co-ordinating tendencies of the hexafluorophosphate ion. J. Chem. Soc. A 1971, 2279–2281 (1971).

    Google Scholar 

  52. 52.

    Legzdins, P. & Martin, D. T. Organometallic nitrosyl chemistry. 20. (η5-C5H5)W(NO)2BF4, a versatile organometallic electrophile. Organometallics 2, 1785–1791 (1983).

    CAS  Google Scholar 

  53. 53.

    Chapman, R. D., Andreshak, J. L. & Shackelford, S. A. Selective synthesis of mono- and bis(2-fluoro-2,2-dinitroethoxy)alkanes: scope of the utility of triflate intermediates. J. Org. Chem. 53, 3711–3755 (1988).

    Google Scholar 

  54. 54.

    Bini, R., Chiappe, C., Marmugi, E. & Pieraccini, D. The ‘non-nucleophilic’ anion [Tf2N]- competes with the nucleophilic Br: an unexpected trapping in the dediazoniation reaction in ionic liquids. Chem. Commun. 2006, 897–899 (2006).

    Google Scholar 

  55. 55.

    Hull, S. & Keen, D. A. Pressure-induced phase transitions in AgCl, AgBr, and AgI. Phys. Rev. B 59, 750–761 (1999).

    CAS  Google Scholar 

  56. 56.

    Rodriguez-Ruiz, V. et al. Recent developments in alkene hydro-functionalisation promoted by homogeneous catalysts based on Earth abundant elements: formation of C–N, C–O and C–P bond. Dalton Trans. 44, 12029–12059 (2015).

    CAS  PubMed  Google Scholar 

  57. 57.

    Collins, K. D., Rühling, A. & Glorius, F. Application of a robustness screen for the evaluation of synthetic organic methodology. Nat. Protoc. 9, 1348–1353.13 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the NIH/National Institute of General Medical Sciences (R01-GM118644), the Alfred P. Sloan Foundation, the David and Lucile Packard Foundation and the Camille and Henry Dreyfus Foundation for financial support. R.B.W. thanks the National Science Foundation for a predoctoral fellowship. J.L.G.-L. thanks CONACyT for a postdoctoral fellowship. We thank J. P. Reid for helpful guidance with the conformational searches associated with the computational studies. We are thankful to R. Wiscons for X-ray powder diffraction studies. We are grateful to P. Zimmerman for helpful discussions regarding the computational studies. We thank J. Kiernicki for helpful guidance with the experimental design to support the active catalyst.

Author information

Affiliations

Authors

Contributions

A.J.D., R.B.W. and C.S.S. conceived the project and synthesized all the substrates and corresponding intermediates. J.L.G.-L. performed the reaction optimization experiments, prepared susbtrates for title reactions, and aided in performing kinetic studies. A.J.D. performed all the title reactions and experimental studies. D.J.N. performed all the computational studies. All the authors discussed the results and contributed to the manuscript preparation.

Corresponding author

Correspondence to Corinna S. Schindler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Tables 1–4, discussion, methods and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davis, A.J., Watson, R.B., Nasrallah, D.J. et al. Superelectrophilic aluminium(iii)–ion pairs promote a distinct reaction path for carbonyl–olefin ring-closing metathesis. Nat Catal 3, 787–796 (2020). https://doi.org/10.1038/s41929-020-00499-5

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing