Abstract
Catalytic carbonyl–olefin metathesis reactions represent powerful synthetic strategies for alkene formation. Successful approaches for carbonyl–olefin ring-closing, ring-opening and cross metathesis have been developed in recent years, but current limitations hamper the generality of these transformations. Stronger, more efficient catalytic systems are needed to further broaden the scope of these transformations while they prevent undesired reaction pathways. Here we report the development of an aluminium-based heterobimetallic ion pair as a superior catalyst that promotes carbonyl–olefin ring-closing metathesis via a distinct reaction mechanism and allows access to six- and seven-membered rings, which suffer from low yields and poor conversion under previously reported conditions. Mechanistic investigations support a distinct reaction profile in which two productive reaction pathways competitively form metathesis products. These insights are expected to have important implications in the catalyst design and development for carbonyl–olefin metathesis and enable future advances to ultimately expand the synthetic utility of these transformations.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Experimental data as well as 1H and 13C NMR spectra for all the new compounds prepared in the course of these studies are provided in the Supplementary Information. Additional information available as part of the Supplementary Information files include synthetic procedures and details relevant to the reaction optimization. 1H NMR spectroscopy files used for kinetic experiments and other raw data that support the findings of this paper are available from the corresponding author upon reasonable request.
References
Jones, G.II, Schwartz, S. B. & Marton, M. T. Regiospecific thermal cleavage of some oxetan photoadducts: carbonyl-olefin metathesis in sequential photochemical and thermal steps. J. Chem. Soc. Chem. Commun. 1973, 374–375 (1973).
Jones, G.II, Acquadro, M. A. & Carmody, M. A. Long-chain enals via carbonyl-olefin metathesis. An application in pheromone synthesis. J. Chem. Soc. Chem. Commun. 1975, 206–207 (1975).
Carless, H. A. J. & Trivedi, H. S. New ring expansion reaction of 2-t-butyloxetans. J. Chem. Soc. Chem. Commun. 1979, 382–383 (1979).
D’Auria, M., Racioppi, R. & Viggiani, L. Paternò–Büchi reaction between furan and heterocyclic aldehydes: oxetane formation vs. metathesis. Photochem. Photobiol. Sci. 9, 1134–1138 (2010).
Pérez-Ruiz, R., Gil, S. & Miranda, M. A. Stereodifferentiation in the photochemical cycloreversion of diastereomeric methoxynaphthalene–oxetane dyads. J. Org. Chem. 70, 1376–1381 (2005).
Pérez-Ruiz, R., Miranda, M. A., Alle, R., Meerholz, K. & Griesbeck, A. G. An efficient carbonyl–alkene metathesis of bicyclic oxetanes: photoinduced electron transfer reduction of the Paternò–Büchi adducts from 2,3-dihydrofuran and aromatic aldehydes. Photochem. Photobiol. Sci. 5, 51–55 (2006).
Valiulin, R. A. & Kutateladze, A. G. Harvesting the strain installed by a Paternò–Büchi step in a synthetically useful way: high-yielding photoprotolytic oxametathesis in polycyclic systems. Org. Lett. 11, 3886–3889 (2009).
Valiulin, R. A., Arisco, T. M. & Kutateladze, A. G. Double-tandem [4π+2π]·[2π+2π]·[4π+2π]·[2π+2π] synthetic sequence with protoprotolytic oxametathesis and photoepoxidation in the chromone series. J. Org. Chem. 76, 1319–1332 (2011).
Valiulin, R. A., Arisco, T. M. & Kutateladze, A. G. Photoinduced intramolecular cyclopentanation vs photoprotolytic oxametathesis in polycyclic alkenes outfitted with conformationally constrained aroylmethyl chromophores. J. Org. Chem. 78, 2012–2025 (2013).
Fu, G. C. & Grubbs, R. H. Synthesis of cycloalkenes via alkylidene-mediated olefin metathesis and carbonyl olefination. J. Am. Chem. Soc. 115, 3800–3801 (1993).
Schopov, I. & Jossifov, C. A carbonyl–olefin exchange reaction—new route to polyconjugated polymers. 1. A new synthesis of polyphenylacetylene. Makromol. Chem. Rapid Commun. 4, 659–662 (1983).
Soicke, A., Slavov, N., Neudörfl, J.-M. & Schmalz, H.-G. Metal-free intramolecular carbonyl–olefin metathesis of ortho-prenylaryl ketones. Synlett 17, 2487–2490 (2011).
van Schaik, H.-P., Vijn, R.-J. & Bickelhaupt, F. Oxidation of metal-coordinated thioethers with dimethyldioxirane—a new stereoselective synthesis of chiral sulfoxides. Angew. Chem. Int. Ed. Engl. 33, 1611–1612 (1994).
Jossifov, C., Kalinova, R. & Demonceau, A. Carbonyl olefin metathesis. Chim. Oggi 26, 85–87 (2008).
Griffith, A. K., Vanos, C. M. & Lambert, T. H. Organocatalytic carbonyl–olefin metathesis. J. Am. Chem. Soc. 134, 18581–18584 (2012).
Hong, X., Liang, Y., Griffith, A. K., Lambert, T. H. & Houk, K. N. Distortion-accelerated cycloadditions and strain-release-promoted cycloreversions in the organocatalytic carbonyl–olefin metathesis. Chem. Sci. 5, 471–475 (2014).
Zhang, Y., Jermaks, J., MacMillan, S. N. & Lambert, T. H. Synthesis of 2H-chromenes via hydrazine-catalysed ring-closing carbonyl–olefin metathesis. ACS Catal. 9, 9259–9264 (2019).
Ludwig, J. R. & Schindler, C. S. Lewis acid catalysed carbonyl–olefin metathesis. Synlett 28, 1501–1509 (2017).
Lambert, T. H. Development of a hydrazine-catalysed carbonyl–olefin metathesis reaction. Synlett 30, 1954–1965 (2019).
Ludwig, J. R., Zimmerman, P. M., Gianino, J. B. & Schindler, C. S. Iron(iii)-catalysed carbonyl–olefin metathesis. Nature 533, 374–379 (2016).
McAtee, C. M., Riehl, P. S. & Schindler, C. S. Polycyclic aromatic hydrocarbons via iron(iii)-catalysed carbonyl–olefin metathesis. J. Am. Chem. Soc. 139, 2960–2963 (2017).
Ludwig, J. R. et al. Mechanistic investigations of the iron(iii)-catalysed carbonyl–olefin metathesis reaction. J. Am. Chem. Soc. 139, 10832–10842 (2017).
Groso, E. J. et al. 3-Aryl-2,5-dihydropyrroles via catalytic carbonyl–olefin metathesis. ACS Catal. 8, 2006–2011 (2018).
Albright, H. et al. GaCl3-catalysed ring-opening carbonyl–olefin metathesis. Org. Lett. 20, 4954–4958 (2018).
Riehl, P. S. & Nasrallah, D. J. & Schindler, C. S. Catalytic, transannular reactions. Chem. Sci. https://doi.org/10.1039/C9SC03716K (2019).
Ma, L. et al. FeCl3-catalysed ring-closing carbonyl–olefin metathesis. Angew. Chem. Int. Ed. 55, 10410–10413 (2016).
Hanson, C. S., Psaltakis, M. C., Cortes, J. J. & Devery, J. J. III Catalyst behavior in metal-catalysed carbonyl–olefin metathesis. J. Am. Chem. Soc. 141, 11870–11880 (2019).
Naidu, V. R., Bah, J. & Franzén, J. Direct organocatalytic oxo-metathesis, a trans-selective carbocation-catalysed olefination of aldehydes. Eur. J. Org. Chem. 2015, 1834–1839 (2015).
Ni, S. & Franzén, J. Carbocation catalysed ring closing aldehyde–olefin metathesis. Chem. Commun. 54, 12982–12985 (2018).
Tran, U. P. N., Oss, G., Pace, D. P., Ho, J. & Nguyen, T. V. Tropylium-promoted carbonyl–olefin metathesis reactions. Chem. Sci. Transf. 9, 5145–5151 (2018).
Catti, L. & Tiefenbacher, K. Brønsted acid-catalysed carbonyl–olefin metathesis inside a self-assembled supramolecular host. Angew. Chem. Int. Ed. 57, 14589–14592 (2018).
Zhu, Y., Rebek, J. Jr & Yu, Y. Cyclizations catalysed inside a hexameric resorcinarene capsule. Chem. Commun. 55, 3573–3577 (2019).
Djurovic, A. et al. Synthesis of medium-sized carbocycles by gallium-catalysed tandem carbonyl–olefin metathesis/transfer hydrogenation. Org. Lett. 21, 8132–8137 (2019).
Ludwig, J. R. et al. Interrupted carbonyl–olefin metathesis via oxygen atom transfer. Science 361, 1363–1369 (2018).
Albright, H. et al. Catalytic carbonyl–olefin metathesis of aliphatic ketones: iron(iii) homo-dimers as Lewis acidic superelectrophiles. J. Am. Chem. Soc. 141, 1690–1700 (2019).
Olah, G. A. Superelectrophiles. Angew. Chem. Int. Ed. Engl. 32, 767–788 (1993).
Olah, G. A. & Klumpp, D. A. Superelectrophiles and Their Chemistry (Wiley-VCH, 2007).
Negishi, E. Principle of activation of electrophiles by electrophiles through dimeric association—two are better than one. Chem. Eur. J. 5, 411–420 (1999).
Means, N. C., Means, C. M., Bott, S. G. & Atwood, J. L. Interaction of AlCl3 with tetrahydrofuran. Formation and crystal structure of [AlCl2(THF)4][AlCl4]. Inorg. Chem. 26, 1466–1468 (1987).
Tomifuji, R., Maeda, K., Takahashi, T., Kurahashi, T. & Matsubara, S. FeCl3 as an ion-pairing Lewis acid catalyst. Formation of highly Lewis acidic FeCl2+ and thermodynamically stable FeCl4– to catalyse the aza-Diels–Alder reaction with high turnover frequency. Org. Lett. 20, 7474–7477 (2018).
Denmark, S. E., Eklov, B. M., Yao, P. J. & Eastgate, M. D. On the mechanism of Lewis base catalysed aldol addition reactions: kinetic and spectroscopic investigations using rapid-injection NMR. J. Am. Chem. Soc. 131, 11770–11787 (2009).
Stephan, D. W. & Erker, G. Frustrated Lewis pair chemistry: development and perspectives. Angew. Chem. Int. Ed. 54, 6400–6441 (2015).
Welch, G. C., San Juan, R. R., Masuda, J. D. & Stephan, D. W. Reversible, metal-free hydrogen activation. Science 314, 1124–1126 (2006).
Hamilton, G. L., Kang, E. J., Mba, M. & Toste, F. D. A powerful chiral counteranion strategy for asymmetric transition metal catalysis. Science 317, 496–499 (2007).
Shimizu, Y., Shi, S.-L., Usuda, H., Kanai, M. & Shibasaki, M. Catalytic asymmetric total synthesis of ent-hyperforin. Angew. Chem. Int. Ed. 49, 1103–1106 (2010).
Vaidya, T., Cheng, R., Carlsen, P. N., Frontier, A. J. & Eisenberg, R. Cationic cyclizations and rearrangements promoted by a heterogeneous gold catalyst. Org. Lett. 16, 800–803 (2014).
Tran, U. P. N. et al. Carbonyl–olefin metathesis catalysed by molecular iodine. ACS Catal. 9, 912–919 (2019).
Beck, W. & Sünkel, K. Metal complexes of weakly coordinating anions. Precursors of strong cationic organometallic Lewis acids. Chem. Rev. 88, 1405–1421 (1988).
Strauss, S. H. The search for larger and more weakly coordinating anions. Chem. Rev. 93, 927–942 (1993).
Schottel, B. L. et al. Anion–π interactions as controlling elements in self-assembly reactions of Ag(i) complexes with π-acidic aromatic rings. J. Am. Chem. Soc. 128, 5895–5912 (2006).
Mayfield, H. G. & Bull, W. E. Co-ordinating tendencies of the hexafluorophosphate ion. J. Chem. Soc. A 1971, 2279–2281 (1971).
Legzdins, P. & Martin, D. T. Organometallic nitrosyl chemistry. 20. (η5-C5H5)W(NO)2BF4, a versatile organometallic electrophile. Organometallics 2, 1785–1791 (1983).
Chapman, R. D., Andreshak, J. L. & Shackelford, S. A. Selective synthesis of mono- and bis(2-fluoro-2,2-dinitroethoxy)alkanes: scope of the utility of triflate intermediates. J. Org. Chem. 53, 3711–3755 (1988).
Bini, R., Chiappe, C., Marmugi, E. & Pieraccini, D. The ‘non-nucleophilic’ anion [Tf2N]- competes with the nucleophilic Br−: an unexpected trapping in the dediazoniation reaction in ionic liquids. Chem. Commun. 2006, 897–899 (2006).
Hull, S. & Keen, D. A. Pressure-induced phase transitions in AgCl, AgBr, and AgI. Phys. Rev. B 59, 750–761 (1999).
Rodriguez-Ruiz, V. et al. Recent developments in alkene hydro-functionalisation promoted by homogeneous catalysts based on Earth abundant elements: formation of C–N, C–O and C–P bond. Dalton Trans. 44, 12029–12059 (2015).
Collins, K. D., Rühling, A. & Glorius, F. Application of a robustness screen for the evaluation of synthetic organic methodology. Nat. Protoc. 9, 1348–1353.13 (2014).
Acknowledgements
We thank the NIH/National Institute of General Medical Sciences (R01-GM118644), the Alfred P. Sloan Foundation, the David and Lucile Packard Foundation and the Camille and Henry Dreyfus Foundation for financial support. R.B.W. thanks the National Science Foundation for a predoctoral fellowship. J.L.G.-L. thanks CONACyT for a postdoctoral fellowship. We thank J. P. Reid for helpful guidance with the conformational searches associated with the computational studies. We are thankful to R. Wiscons for X-ray powder diffraction studies. We are grateful to P. Zimmerman for helpful discussions regarding the computational studies. We thank J. Kiernicki for helpful guidance with the experimental design to support the active catalyst.
Author information
Authors and Affiliations
Contributions
A.J.D., R.B.W. and C.S.S. conceived the project and synthesized all the substrates and corresponding intermediates. J.L.G.-L. performed the reaction optimization experiments, prepared susbtrates for title reactions, and aided in performing kinetic studies. A.J.D. performed all the title reactions and experimental studies. D.J.N. performed all the computational studies. All the authors discussed the results and contributed to the manuscript preparation.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–7, Tables 1–4, discussion, methods and references.
Rights and permissions
About this article
Cite this article
Davis, A.J., Watson, R.B., Nasrallah, D.J. et al. Superelectrophilic aluminium(iii)–ion pairs promote a distinct reaction path for carbonyl–olefin ring-closing metathesis. Nat Catal 3, 787–796 (2020). https://doi.org/10.1038/s41929-020-00499-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41929-020-00499-5