Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metal-free photoredox-catalysed formal C–H/C–H coupling of arenes enabled by interrupted Pummerer activation

Abstract

Aryl–aryl cross-coupling constitutes one of the most widely used procedures for the synthesis of high-value materials that range from pharmaceuticals to organic electronics and conducting polymers. The assembly of (hetero)biaryl scaffolds generally requires multiple steps; coupling partners must be functionalized before the key bond-forming event is considered. The development of selective C–H arylation processes in arenes—which sidestep the need for prefunctionalized partners—is thus crucial for streamlining the construction of these key architectures. Here we report an expedient, one-pot assembly of (hetero)biaryl motifs using photocatalysis and two non-prefunctionalized arene partners. The approach is underpinned by the functionalization of a C–H bond in an arene coupling partner using the interrupted Pummerer reaction. A unique pairing of the organic photoredox catalyst and the intermediate dibenzothiophenium salts enables highly selective reduction in the presence of sensitive functionalities. The utility of the metal-free, one-pot strategy is exemplified by the synthesis of a bioactive natural product and the modification of complex molecules of societal importance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies for arylation of arenes.
Fig. 2: A mechanistic proposal for a one-pot, metal-free, photoredox-catalysed C–H/C–H coupling of arenes, enabled by the interrupted Pummerer activation.
Fig. 3: Mechanistic investigations.
Fig. 4: Application of the one-pot, metal-free photoredox-catalysed, formal C–H/C–H coupling of arenes, enabled by interrupted Pummerer activation.

Similar content being viewed by others

Data availability

All data are available in the main text or Supplementary Information. Metrical parameters for the structures of 2, 60 and S12 (see Supplementary Information) are available free of charge from the Cambridge Crystallographic Data Centre (https://www.ccdc.cam.ac.uk/) under reference nos. 1922367, 1922368 and 1960231.

References

  1. Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium‐catalyzed cross‐coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 51, 5062–5085 (2012).

    CAS  Google Scholar 

  2. Roughley, S. D. & Jordan, A. M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    CAS  PubMed  Google Scholar 

  3. Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    CAS  PubMed  Google Scholar 

  4. Yang, Y., Lan, J. & You, J. Oxidative C–H/C–H coupling reactions between two (hetero)arenes. Chem. Rev. 117, 8787–8863 (2017).

    CAS  PubMed  Google Scholar 

  5. Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chem. Soc. Rev. 47, 6603–6743 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hari, D. P., Schroll, P. & Konig, B. Metal-free, visible-light-mediated direct C–H arylation of heteroarenes with aryl diazonium salts. J. Am. Chem. Soc. 134, 2958–2961 (2012).

    CAS  PubMed  Google Scholar 

  7. Ghosh, I., Marzo, L., Das, A., Shaikh, R. & König, B. Visible light mediated photoredox catalytic arylation reactions. Acc. Chem. Res. 49, 1566–1577 (2016).

    CAS  PubMed  Google Scholar 

  8. Nguyen, J. D., D’Amato, E. M., Narayanam, J. M. R. & Stephenson, C. R. J. Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions. Nat. Chem. 4, 854–859 (2012).

    CAS  PubMed  Google Scholar 

  9. Kim, H. & Lee, C. Visible-light-induced photocatalytic reductive transformations of organohalides. Angew. Chem. Int. Ed. 51, 12303–12306 (2012).

    CAS  Google Scholar 

  10. Ghosh, I., Ghosh, T., Bardagi, J. I. & König, B. Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science 346, 725–728 (2014).

    CAS  PubMed  Google Scholar 

  11. Marzo, L., Ghosh, I., Esteban, F. & König, B. Metal-free photocatalyzed cross coupling of bromoheteroarenes with pyrroles. ACS Catal. 6, 6780–6784 (2016).

    CAS  Google Scholar 

  12. Ghosh, I. & König, B. Chromoselective photocatalysis: controlled bond activation through light-color regulation of redox potentials. Angew. Chem. Int. Ed. 55, 7676–7679 (2016).

    CAS  Google Scholar 

  13. Ghosh, I., Shaikh, R. S. & König, B. Sensitization-initiated electron transfer for photoredox catalysis. Angew. Chem. Int. Ed. 56, 8544–8549 (2017).

    CAS  Google Scholar 

  14. Smith, L. H. S., Coote, S. C., Sneddon, H. F. & Procter, D. J. Beyond the Pummerer reaction: recent developments in thionium ion chemistry. Angew. Chem. Int. Ed. 49, 5832–5844 (2010).

    CAS  Google Scholar 

  15. Eberhart, A. J., Imbriglio, J. E. & Procter, D. J. Nucleophilic ortho allylation of aryl and heteroaryl sulfoxides. Org. Lett. 13, 5882–5885 (2011).

    CAS  PubMed  Google Scholar 

  16. Huang, X. & Maulide, N. Sulfoxide-mediated α-arylation of carbonyl compounds. J. Am. Chem. Soc. 133, 8510–8513 (2011).

    CAS  PubMed  Google Scholar 

  17. Eberhart, A. J. & Procter, D. J. Nucleophilic ortho-propargylation of aryl sulfoxides: an interrupted Pummerer/allenyl thio-claisen rearrangement sequence. Angew. Chem. Int. Ed. 52, 4008–4011 (2013).

    CAS  Google Scholar 

  18. Huang, X., Patil, M., Fares, C., Thiel, W. & Maulide, N. Sulfur(iv)-mediated transformations: from ylide transfer to metal free arylation of carbonyl compounds. J. Am. Chem. Soc. 135, 7312–7323 (2013).

    CAS  PubMed  Google Scholar 

  19. Peng, B., Huang, X., Xie, L.-G. & Maulide, N. A Brønsted acid catalyzed redox arylation. Angew. Chem. Int. Ed. 53, 8718–8721 (2014).

    CAS  Google Scholar 

  20. Peng, B., Geerdink, D., Fars, C. & Maulide, N. Chemoselective intermolecular α-arylation of amides. Angew. Chem. Int. Ed. 53, 5462–5466 (2014).

    CAS  Google Scholar 

  21. Pulis, A. P. & Procter, D. J. C–H coupling reactions directed by sulfoxides: teaching an old functional group new tricks. Angew. Chem. Int. Ed. 55, 9842–9860 (2016).

    CAS  Google Scholar 

  22. Fernandez-Salas, J. A., Eberhart, A. J. & Procter, D. J. Metal-free CH–CH-type cross-coupling of arenes and akynes directed by a multifunctional sulfoxide group. J. Am. Chem. Soc. 138, 790–793 (2016).

    CAS  PubMed  Google Scholar 

  23. Cowper, P., Jin, Y., Turton, M. D., Kociok-Köhn, G. & Lewis, S. E. Azulenesulfonium salts: accessible, stable, and versatile reagents for cross-coupling. Angew. Chem. Int. Ed. 55, 2564–2568 (2016).

    CAS  Google Scholar 

  24. Li, Y. et al. Aryne 1,2,3-trifunctionalization with aryl allyl sulfoxides. J. Am. Chem. Soc. 138, 10814–10817 (2016).

    CAS  PubMed  Google Scholar 

  25. Yanagi, T. et al. Metal-free approach to biaryls from phenols and aryl sulfoxides by temporarily sulfur-tethered regioselective C–H/C–H coupling. J. Am. Chem. Soc. 138, 14582–14585 (2016).

    CAS  PubMed  Google Scholar 

  26. Shrives, H. J., Fernandez-Salas, J. A., Hedtke, C., Pulis, A. P. & Procter, D. J. Regioselective synthesis of C3 alkylated and arylated benzothiophenes. Nat. Commun. 8, 14801 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Kaldre, D. et al. An asymmetric redox arylation: chirality transfer from sulfur to carbon through a sulfonium [3,3]-sigmatropic rearrangement. Angew. Chem. Int. Ed. 56, 2212–2215 (2017).

    CAS  Google Scholar 

  28. Chen, D. et al. Metal-free O–H/C–H difunctionalization of phenols by o-hydroxyarylsulfonium salts in water. Chem. Sci. 8, 1601–1606 (2017).

    CAS  PubMed  Google Scholar 

  29. Yorimitsu, H. Cascades of interrupted Pummerer reaction-sigmatropic rearrangement. Chem. Rec. 17, 1156–1167 (2017).

    CAS  PubMed  Google Scholar 

  30. Shang, L. et al. Redox-neutral α-arylation of alkyl nitriles with aryl sulfoxides: a rapid electrophilic rearrangement. J. Am. Chem. Soc. 139, 4211–4217 (2017).

    CAS  PubMed  Google Scholar 

  31. He, Z. et al. Synthesis of C2 substituted benzothiophenes via an interrupted Pummerer/[3,3]-sigmatropic/1,2-migration cascade of benzothiophene S-oxides. Angew. Chem. Int. Ed. 57, 5759–5764 (2018).

    CAS  Google Scholar 

  32. Zhang, L. et al. Selective [5,5]-sigmatropic rearrangement by assembly of aryl sulfoxides with allyl nitriles. Angew. Chem. Int. Ed. 58, 5316–5320 (2019).

    CAS  Google Scholar 

  33. Berger, F. et al. Site-selective and versatile aromatic C–H functionalization by thianthrenation. Nature 567, 223–228 (2019).

    CAS  PubMed  Google Scholar 

  34. He, Z., Pulis, A. P. & Procter, D. J. The interrupted Pummerer reaction in a sulfoxide-catalyzed oxidative coupling of 2-naphthols. Angew. Chem. Int. Ed. 58, 7813–7817 (2019).

    CAS  Google Scholar 

  35. He, Z., Pulis, A. P., Perry, G. J. & Procter, D. J. Pummerer chemistry of benzothiophene S-oxides: metal-free alkylation and arylation of benzothiophenes. Phosphorus Sulfur Silicon Relat. Elem. 194, 669–677 (2019).

    CAS  Google Scholar 

  36. Šiaučiulis, M., Ahlsten, N., Pulis, A. P. & Procter, D. J. Transition-metal-free cross-coupling of benzothiophenes and styrenes in a stereoselective synthesis of substituted (E,Z)-1,3-dienes. Angew. Chem. Int. Ed. 58, 8779–8783 (2019).

    Google Scholar 

  37. Aukland, M. H., Talbot, F. J. T., Fernandez-Salas, J. A., Ball, M., Pulis, A. P. & Procter, D. J. An interrupted Pummerer/nickel-catalysed cross-coupling sequence. Angew. Chem. Int. Ed. 57, 9785–9789 (2018).

    CAS  Google Scholar 

  38. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    CAS  PubMed  Google Scholar 

  40. Cismesia, M. A. & Yoon, T. P. Characterizing chain processes in visible light photoredox catalysis. Chem. Sci. 6, 5426–5434 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hedstrand, D. M., Kruizunga, W. H. & Kellogg, R. M. Light induced and dye accelerated reductions of phenacyl onium salts by 1,4-dihydropyridines. Tetrahedron Lett. 14, 1255–1258 (1978).

    Google Scholar 

  42. Otsuka, S., Nogi, K., Rovis, T. & Yorimitsu, H. Photoredox-catalyzed alkenylation of benzylsulfonium salts. Chem. Asian J. 14, 532–536 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Donck, S., Baroudi, A., Fensterbank, L., Goddard, J.-P. & Ollivier, C. Visible-light photocatalytic reduction of sulfonium salts as a source of aryl radicals. Adv. Synth. Catal. 355, 1477–1482 (2013).

    CAS  Google Scholar 

  44. Liu, W. et al. Organocatalysis in cross-coupling: DMEDA-catalyzed direct C–H arylation of unactivated benzene. J. Am. Chem. Soc. 132, 16737–16740 (2010).

    CAS  PubMed  Google Scholar 

  45. Discekici, E. H. et al. A highly reducing metal-free photoredox catalyst: design and application in radical dehalogenations. Chem. Commun. 51, 11705–11708 (2015).

    CAS  Google Scholar 

  46. Garrido-Castro, A. F., Salaverri, N., Maestro, M. C. & Aleman, J. Intramolecular homolytic substitution enabled by photoredox catalysis: sulfur, phosphorus, and silicon heterocycle synthesis from aryl halides. Org. Lett. 21, 5295–3000 (2019).

    CAS  PubMed  Google Scholar 

  47. Boyington, A. J., Seath, C. P., Zearfoss, A. M., Xu, Z. & Jui, N. T. Catalytic strategy for regioselective arylethylamine synthesis. J. Am. Chem. Soc. 141, 4147–4153 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Martinez-Gualda, A. M. et al. Chromoselective access to Z- or E- allylated amines and heterocycles by a photocatalytic allylation reaction. Nat. Commun. 10, 2634 (2019).

    PubMed  PubMed Central  Google Scholar 

  49. Wang, H. & Jui, N. T. Catalytic defluoroalkylation of trifluoromethylaromatics with unactivated alkenes. J. Am. Chem. Soc. 140, 163–166 (2018).

    PubMed  Google Scholar 

  50. Yanagi, T., Nogi, K. & Yorimitsu, H. Construction of biaryls from aryl sulfoxides and anilines by means of a sigmatropic rearrangement. Chem. Eur. J. https://doi.org/10.1002/chem.201903570 (2019).

    Google Scholar 

  51. Kunfermann, A. et al. Pseudilins: halogenated, allosteric inhibitors of the non-mevalonate pathway enzyme IspD. Angew. Chem. Int. Ed. 53, 2235–2239 (2014).

    CAS  Google Scholar 

  52. Preller, M., Chinthalapudi, K., Martin, R., Knölker, H.-J. & Manstein, D. J. Inhibition of myosin ATPase activity by halogenated pseudilins: a structure–activity study. J. Med. Chem. 54, 3675–3685 (2011).

    CAS  PubMed  Google Scholar 

  53. Martin, R. et al. Total synthesis of pentabromo- and pentachloropseudilin, and synthetic analogues—allosteric inhibitors of myosin ATPase. Angew. Chem. Int. Ed. 48, 8042–8046 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the EPSRC (Doctoral Prize Fellowship to M.H.A.; Established Career Fellowship to D.J.P.) and The University of Manchester (Lectureship to G.J.P.P.; Studentship to M.Š.) for their generous support. Additional thanks go to L. Natrajan and F. J. Hernandez for their assistance with the fluorescence quenching, electrochemical studies and quantum yield determination, as well as to D. Leonori for his advice on the design of the experiments.

Author information

Authors and Affiliations

Authors

Contributions

M.H.A. and D.J.P. conceived the study and co-wrote the manuscript. M.H.A. designed and performed experiments and M.Š., A.W. and G.J.P.P. performed experiments.

Corresponding author

Correspondence to David J. Procter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–12, Tables 1–6 and references.

Compound 2

Crystallographic information for Compound 2.

Compound 60

Crystallographic information for Compound 60.

Compound S12

Crystallographic information for Compound S12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aukland, M.H., Šiaučiulis, M., West, A. et al. Metal-free photoredox-catalysed formal C–H/C–H coupling of arenes enabled by interrupted Pummerer activation. Nat Catal 3, 163–169 (2020). https://doi.org/10.1038/s41929-019-0415-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0415-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing