Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis


The electrosynthesis of C2+ hydrocarbons from CO2 has attracted recent attention in light of the relatively high market price per unit energy input. Today’s low selectivities and stabilities towards C2+ products at high current densities curtail system energy efficiency, which limits their prospects for economic competitiveness. Here we present a materials processing strategy based on in situ electrodeposition of copper under CO2 reduction conditions that preferentially expose and maintain Cu(100) facets, which favour the formation of C2+ products. We observe capping of facets during catalyst synthesis and achieve control over faceting to obtain a 70% increase in the ratio of Cu(100) facets to total facet area. We report a 90% Faradaic efficiency for C2+ products at a partial current density of 520 mA cm−2 and a full-cell C2+ power conversion efficiency of 37%. We achieve nearly constant C2H4 selectivity over 65 h operation at 350 mA cm−2 in a membrane electrode assembly electrolyser.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: DFT calculations.
Fig. 2: The influence of intermediate adsorption on copper clustering.
Fig. 3: Analysis of the catalyst formation and the surface structures.
Fig. 4: CO2 electroreduction performance.

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.


  1. 1.

    Bushuyev, O. S. et al. What should we make with CO2 and how can we make it? Joule 2, 1–8 (2018).

    Google Scholar 

  2. 2.

    Mistry, H., Varela, A. S., Kühl, S., Strasser, P. & Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 1, 16009 (2016).

    CAS  Google Scholar 

  3. 3.

    Schouten, K., Kwon, Y., Van der Ham, C., Qin, Z. & Koper, M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2, 1902–1909 (2011).

    CAS  Google Scholar 

  4. 4.

    Hori, Y. Modern Aspects of Electrochemistry 89–189 (Springer, 2008).

  5. 5.

    Wang, Y., Liu, J., Wang, Y., Al-Enizi, A. M. & Zheng, G. Tuning of CO2 reduction selectivity on metal electrocatalysts. Small 13, 1701809 (2017).

    Google Scholar 

  6. 6.

    Hoang, T. T. H., Ma, S., Gold, J. I., Kenis, P. J. A. & Gewirth, A. A. Nanoporous copper films by additive-controlled electrodepsition: CO2 reduction catalysis. ACS Catal. 7, 3313–3321 (2017).

    CAS  Google Scholar 

  7. 7.

    De Luna, P. et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018).

    Google Scholar 

  8. 8.

    Mistry, H. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 12123 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Hoang, T. T. H. et al. Nano porous copper-silver alloys by additive-controlled electro-deposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018).

    CAS  PubMed  Google Scholar 

  10. 10.

    Zhuang, T.-T. et al. Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1, 421–428 (2018).

    CAS  Google Scholar 

  11. 11.

    Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    CAS  PubMed  Google Scholar 

  12. 12.

    Jiang, K. et al. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 1, 111–119 (2018).

    CAS  Google Scholar 

  13. 13.

    Li, C. W. & Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134, 7231–7234 (2012).

    CAS  PubMed  Google Scholar 

  14. 14.

    Reller, C. et al. Selective electroreduction of CO2 toward ethylene on nano dendritic copper catalysts at high current density. Adv. Energy Mater. 7, 1602114 (2017).

    Google Scholar 

  15. 15.

    Pérez Gallent, E., Marcandalli, G., Figueiredo, M. C., Calle-Vallejo, F. & Koper, M. Structure- and potential-dependent cation effects on CO reduction at copper single-crystal electrodes. J. Am. Chem. Soc. 139, 16412–16419 (2017).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Pérez Gallent, E., Figueiredo, M. C., Calle-Vallejo, F. & Koper, M. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem. Int. Ed. 56, 3621–3624 (2017).

    Google Scholar 

  17. 17.

    Hori, Y., Takahashi, I., Koga, O. & Hoshi, N. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J. Mol. Catal. A: Chem. 199, 39–47 (2003).

    CAS  Google Scholar 

  18. 18.

    Roberts, F. S., Kuhl, K. P. & Nilsson, A. High selectivity for ethlyene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. Int. Ed. 54, 5179–5182 (2015).

    CAS  Google Scholar 

  19. 19.

    Jin, M. et al. Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent. Angew. Chem. Int. Ed. 50, 10560–10564 (2011).

    CAS  Google Scholar 

  20. 20.

    Huang, J. et al. Potential-induced nanoculstering of metallic catalysts during electrochemcial CO2 reduction. Nat. Commun. 9, 3117 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Tran, R. et al. Surface energies of elemental crystals. Sci. Data 3, 160080 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Droog, J. M. M. & Schlenter, B. Oxygen electrosorption on copper single crystal electrodes in sodium hydroxide solution. J. Electroanal. Chem. 112, 387–390 (1980).

    CAS  Google Scholar 

  23. 23.

    Raciti, D. et al. Low-overpotential electroreduction of carbon monoxide using copper nanowires. ACS Catal. 7, 4467–4472 (2017).

    CAS  Google Scholar 

  24. 24.

    Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).

    CAS  PubMed  Google Scholar 

  25. 25.

    Zhuang, T.-T. et al. 1D colloidal hetero-nanomaterials with programmed semichonductor morphology and metal location for enhancing solar energy conversion. Small 13, 1602629 (2017).

    Google Scholar 

  26. 26.

    Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    CAS  PubMed  Google Scholar 

  27. 27.

    Cheng, T., Xiao, H. & Goddard, W. A. III Nature of the active sites for CO reduction on copper nanoparticles; suggestions for optimizing performance. J. Am. Chem. Soc. 139, 11642–11645 (2017).

    CAS  PubMed  Google Scholar 

  28. 28.

    Liu, X. et al. Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 8, 15438 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Reske, R., Mistry, H., Behafarid, F., Roldan Cuenya, B. & Strasser, P. Size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 136, 6978–6986 (2014).

    CAS  PubMed  Google Scholar 

  30. 30.

    Huang, X. et al. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 6, 28–32 (2011).

    CAS  PubMed  Google Scholar 

  31. 31.

    Kang, Y., Ye, X. & Murray, C. B. Size- and shape-selective synthesis of metal nanocrytals and nanowires using CO as a reducing agent. Angew. Chem. Int. Ed. 49, 6156–6159 (2010).

    CAS  Google Scholar 

  32. 32.

    Cui, C. et al. Carbon monoxide-assisted size confinement of bimetallic alloy nanoparticels. J. Am. Chem. Soc. 136, 4813–4816 (2014).

    CAS  PubMed  Google Scholar 

  33. 33.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  34. 34.

    Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  35. 35.

    Kresse, G. & Hafner, J. Ab-Initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in Germanium. Phys. Rev. B 49, 14251–14269 (1994).

    CAS  Google Scholar 

  36. 36.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Google Scholar 

  37. 37.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  PubMed  Google Scholar 

  38. 38.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  39. 39.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  40. 40.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    PubMed  Google Scholar 

  41. 41.

    Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 32, 1456–1465 (2011).

    CAS  Google Scholar 

  42. 42.

    Michaelides, A. et al. Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces. J. Am. Chem. Soc. 125, 3704–3705 (2003).

    CAS  PubMed  Google Scholar 

  43. 43.

    Liu, Z. P. & Hu, P. General rules for predicting where a catalytic reaction should occur on metal surfaces: A density functional theory study of C–H and C–O bond breaking/making on flat, stepped, and kinked metal surfaces. J. Am. Chem. Soc. 125, 1958–1967 (2003).

    CAS  PubMed  Google Scholar 

  44. 44.

    Alavi, A., Hu, P. J., Deutsch, T., Silvestrelli, P. L. & Hutter, J. CO oxidation on Pt(111): an ab initio density functional theory study. Phys. Rev. Lett. 80, 3650–3653 (1998).

    CAS  Google Scholar 

  45. 45.

    Montoya, J. H., Shi, C., Chan, K. & Nørskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

    CAS  PubMed  Google Scholar 

  46. 46.

    van Duin, A. C. T. et al. Development and validation of a reaxFF reactive force field for Cu cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases. J. Phys. Chem. A 114, 9507–9514 (2010).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Cheng, T., Xiao, H. & Goddard, W. A. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free energy calculation at 298 K. Proc. Natl Acad. Sci. USA 114, 1795–1800 (2017).

    CAS  PubMed  Google Scholar 

  48. 48.

    Sundararaman, R. & Goddard, W. A. III The charge-asymmetric nonlocally determined local-electric (CANDLE) solvation model. J. Chem. Phys. 142, 064107 (2015).

    PubMed  Google Scholar 

  49. 49.

    Xiao, H., Cheng, T. & Goddard, W. A. III Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139, 130–136 (2017).

    CAS  PubMed  Google Scholar 

  50. 50.

    Sundararaman, R., Goddard, W. A. II & Arias, T. A. Grand canonical electronic density-functional theory: algorithms and applications to electrochemistry. J. Chem. Phys. 146, 114104 (2017).

    PubMed  Google Scholar 

  51. 51.

    Sundararaman, R. et al. JDFTx: software for joint density-functional theory. SoftwareX 6, 278–284 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comp. Mater. Sci. 68, 314–319 (2013).

    CAS  Google Scholar 

  53. 53.

    Verdaguer-Casadevall, A. et al. Probing the active surface sites for CO reduction on oxide-derived electrocatalysts. J. Am. Chem. Soc. 137, 9808–9811 (2015).

    CAS  PubMed  Google Scholar 

  54. 54.

    Millero, F. J. & Rabindra, N. R. A chemical equilibrium model for the carbonate system in natural waters. Croat. Chem. Acta 70, 1–38 (1997).

    CAS  Google Scholar 

  55. 55.

    COMSOL Multiphysics v. 5.3a (COMSOL AB, 2017);

  56. 56.

    Millero, F. J., Graham, T. B., Huang, F., Bustos-Serrano, H. & Pierrot, D. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar. Chem. 100, 80–94 (2006).

    CAS  Google Scholar 

  57. 57.

    Weisenberger, S. & Schumpe, A. Estimation of gas solubilities in salt solutions at temperatures from 273 K to 363 K. AIChE J. 42, 298–300 (1996).

    CAS  Google Scholar 

  58. 58.

    Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicx, R. M. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897–907 (1973).

    CAS  Google Scholar 

  59. 59.

    Burdyny, T. et al. Nanomorphology-enhanced gas-evolution intensifies CO2 reduction electrochemistry. ACS Sustain. Chem. Eng. 5, 4031–4040 (2017).

    CAS  Google Scholar 

  60. 60.

    Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).

    CAS  Google Scholar 

  61. 61.

    Li, J. et al. Revealing the synergy of mono/bimetallic PdPt/TiO2 heterostructure for enhanced photoresponse performance. J. Phys. Chem. 121, 24861–24870 (2017).

    CAS  Google Scholar 

  62. 62.

    Luc, W., Rosen, J. & Jiao, F. An Ir-based anode for a practical CO2 electrolyzer. Catal. Today 288, 79–94 (2017).

    CAS  Google Scholar 

Download references


This work was supported financially by TOTAL American Services, the Connaught Fund, the Ontario Research Fund: Research Excellence Program, the Natural Sciences and Engineering Research Council of Canada and the CIFAR Bio-inspired Solar Energy programme. This research used synchrotron resources from the Advanced Photon Source (an Office of Science User Facility operated for the US Department of Energy) Office of Science by Argonne National Laboratory, supported by the US Department of Energy under contract no. DE-AC02-06CH11357) and the Canadian Light Source and its funding partners. All DFT computations were performed on the IBM BlueGene/Q supercomputer with support from the Southern Ontario Smart Computing Innovation Platform and Niagara supercomputer at the SciNet HPC Consortium. Southern Ontario Smart Computing Innovation Platform is funded by the Federal Economic Development Agency of Southern Ontario, the Province of Ontario, IBM Canada, Ontario Centres of Excellence, Mitacs and 15 Ontario academic member institutions. SciNet is funded by the Canada Foundation for Innovation; the Government of Ontario; Ontario Research Fund—Research Excellence; and the University of Toronto. We acknowledge the Toronto Nanofabrication Centre and the Ontario Centre for the Characterization of Advanced Materials for sample preparation and characterization facilities. The authors thank T. P. Wu, Z. Finfrock and L. Ma for technical support at 9BM beamline of the Advanced Photon Source. The authors also thank D. Jiang, N. Chen, C. Kim and W. Chen for their assistance at the HXMA beamline at the Canadian Light Source. D.S. acknowledges the Natural Sciences and Engineering Research Council of Canada—E.W.R Steacie Memorial Fellowship. A.S. acknowledges Fonds de Recherche du Quebec-Nature et Technologies for the postdoctoral fellowship award. J.L. and M.G.K. acknowledges the Banting postdoctoral fellowship from the Government of Canada. C.M.G. acknowledges Natural Sciences and Engineering Research Council of Canada for funding in the form of a postdoctoral fellowship. We acknowledge L. Huang and G. Zheng for the help in Brunauer–Emmett–Teller measurements and data analysis. We acknowledge D. Kopilovic for designing flow electrolysers. We thank M. Chekini and E. Kumachev for the help in dynamic light scattering measurements.

Author information




E.H.S. supervised the project. Y.W. and C.-T.D. designed the experiments. Y.W. carried out the catalyst synthesis, electrochemical tests, electrocatalysis tests and SEM measurements. Z.W. performed DFT calculations. J.L. performed all the XAS measurements and analysed the results. A.O. performed the tests in MEA electrolysers. M.G.K. prepared evaporated copper seeds. Y.L. and F.L. prepared sputtered copper seeds. C.-S.T. performed TEM measurements and data analysis. A.S. and C.M.G. carried out the operando Raman measurements. M. Luo synthesized copper nanocubes. C.M. performed the local pH simulations. Y.W., H.Z., M.Liu, A.P. and A.J. performed GIWAXS measurements and data analysis. Y.X. designed flow channels for electrolysers. A.P. and P.T. carried out the XPS measurements. T.-T.Z., S.O.K. and D.S. contributed to manuscript writing. All authors discussed, commented on and revised the manuscript.

Corresponding author

Correspondence to Edward H. Sargent.

Ethics declarations

Competing interests

Y.W. and E.H.S. of the University of Toronto have filed provisional patent application no. 62/844,482 regarding the preparation of in-situ synthesized catalysts for CO2 reduction.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–44, Tables 1–19 and references.

Supplementary Data 1

Atomic coordinates of the optimized computational models.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, Z., Dinh, C. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat Catal 3, 98–106 (2020).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing