Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Imaging the dynamics of catalysed surface reactions by in situ scanning electron microscopy

Abstract

Analytical methods that provide direct real-space information about the dynamics of catalysed reactions often require simplified model systems and operate under high-vacuum conditions. There is thus a strong need for the development of methods that enable observation of active catalysts under relevant working conditions. Here, in situ scanning electron microscopy is employed to study reaction dynamics and structure–activity correlations on surfaces. High sensitivity to changes in the work function and surface composition enables the detection of monolayers of adsorbed molecular species on metal surfaces, which is used here to visualize catalytic NO2 hydrogenation on platinum. The initiation of reactive behaviours and propagation of reaction fronts, as well as the spillover of activated species revealed in real-time and across a large pressure range, demonstrate the power of in situ scanning electron microscopy as a surface science tool in the study of gas-phase- and temperature-induced processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Surface sensitivity of the ESEM instrument.
Fig. 2: Grain-dependent surface dynamics and spillover.
Fig. 3: Condition-dependent nonlinear dynamics.
Fig. 4: 3D Visualization of coverage-dependent brightness variations.
Fig. 5: Stationary and moving spiral cores.
Fig. 6: Nonlinear dynamics observed at higher pressure.

Similar content being viewed by others

Data availability

All recorded images and data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Kuwauchi, Y., Yoshida, H., Akita, T., Haruta, M. & Takeda, S. Intrinsic catalytic structure of gold nanoparticles supported on TiO2. Angew. Chem. Int. Ed. 51, 7729–7733 (2012).

    CAS  Google Scholar 

  2. Roobol, S. B. et al. The reactor AFM: non-contact atomic force microscope operating under high-pressure and high-temperature catalytic conditions. Rev. Sci. Instrum. 86, 033706 (2015).

    CAS  PubMed  Google Scholar 

  3. Hendriksen, B. L. M. et al. The role of steps in surface catalysis and reaction oscillations. Nat. Chem. 2, 730–734 (2010).

    CAS  PubMed  Google Scholar 

  4. Mom, R. V. et al. Simultaneous scanning tunneling microscopy and synchrotron X-ray measurements in a gas environment. Ultramicroscopy 182, 233–242 (2017).

    CAS  PubMed  Google Scholar 

  5. Genty, E., Jacobs, L., Visart de Bocarmé, T. & Barroo, C. Dynamic processes on gold-based catalysts followed by environmental microscopies. Catalysts 7, 134 (2017).

    Google Scholar 

  6. Takayanagi, K. High resolution surface study by in-situ UHV transmission electron microscopy. Ultramicroscopy 8, 145–161 (1982).

    CAS  Google Scholar 

  7. Thomas, J. M. Reflections on the value of electron microscopy in the study of heterogeneous catalysts. Proc. R. Soc. A 473, 20160714 (2017).

    PubMed  Google Scholar 

  8. Vendelbo, S. B. et al. Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat. Mater. 13, 884–890 (2014).

    CAS  PubMed  Google Scholar 

  9. Nettesheim, S., von Oertzen, A., Rotermund, H. H. & Ertl, G. Reaction diffusion patterns in the catalytic CO-oxidation on Pt(110): front propagation and spiral waves. J. Chem. Phys. 98, 9977–9985 (1993).

    Google Scholar 

  10. von Boehn, B. & Imbihl, R. Large amplitude excitations traveling along the interface in bistable catalytic methanol oxidation on Rh(110). Phys. Chem. Chem. Phys. 19, 18487–18493 (2017).

    Google Scholar 

  11. Suchorski, Y. & Rupprechter, G. Local reaction kinetics by imaging. Surf. Sci. 643, 52–58 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gorodetskii, V. V., Block, J. H. & Drachsel, W. Isothermal oscillations of the hydrogen-oxidation reaction on platinum: investigations in the field electron and field ion microscope. Appl. Surf. Sci. 7677, 129–135 (1994).

    Google Scholar 

  13. Visart de Bocarmé, T. & Kruse, N. Field emission techniques for studying surface reactions: applying them to NO–H2 interaction with Pd tips. Ultramicroscopy 111, 376–380 (2011).

    PubMed  Google Scholar 

  14. Franz, T. et al. Catalytic CO oxidation on Pt under near ambient pressure: a NAP-LEEM study. Ultramicroscopy 200, 73–78 (2019).

    CAS  PubMed  Google Scholar 

  15. Sachs, C., Hildebrand, M., Völkening, S., Wintterlin, J. & Ertl, G. Spatiotemporal self-organization in a surface reaction: from the atomic to the mesoscopic scale. Science 293, 1635–1638 (2001).

    CAS  PubMed  Google Scholar 

  16. van Spronsen, M. A., Frenken, J. W. M. & Groot, I. M. N. Observing the oxidation of platinum. Nat. Commun. 8, 429 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Dicke, J., Rotermund, H.-H. & Lauterbach, J. Ellipsomicroscopy for surface imaging: contrast mechanism, enhancement, and application to CO oxidation on Pt(110). J. Opt. Soc. Am. A 17, 135–141 (2000).

    CAS  Google Scholar 

  18. Danilatos, G. D. Review and outline of environmental SEM at present. J. Microsc. 162, 391–402 (1990).

    Google Scholar 

  19. Millar, G. J., Nelson, M. L. & Uwins, P. J. R. In situ imaging of catalytic etching on silver during methanol oxidation conditions by environmental scanning electron microscopy. J. Catal. 169, 143–156 (1997).

    CAS  Google Scholar 

  20. Fitzek, H., Schroettner, H., Wagner, J., Hofer, F. & Rattenberger, J. High-quality imaging in environmental scanning electron microscopy—optimizing the pressure limiting system and the secondary electron detection of a commercially available ESEM. J. Microsc. 262, 85–91 (2016).

    CAS  PubMed  Google Scholar 

  21. Greiner, M. T. et al. The oxidation of copper catalysts during ethylene epoxidation. Phys. Chem. Chem. Phys. 17, 25073–25089 (2015).

    CAS  PubMed  Google Scholar 

  22. Poitel, S., Wang, Z.-J., Willinger, M.-G. & Hébert, C. In-situ observation of Co–Ce coated metallic interconnect oxidation combined with high-resolution post exposure. Anal. ECS Trans. 78, 1615–1632 (2017).

    CAS  Google Scholar 

  23. Hieke, S. W. et al. On pinning–depinning and microkink-flow in solid state dewetting: insights by in-situ ESEM on Al thin films. Acta Mater. 165, 153–163 (2019).

    CAS  Google Scholar 

  24. Huang, X., Wang, Z.-J., Weinberg, G., Meng, W.-M. & Willinger, M.-G. In situ scanning electron microscopy observation of growth kinetics and catalyst splitting in vapor–liquid–solid growth of nanowires. Adv. Funct. Mater. 25, 5979–5987 (2015).

    CAS  Google Scholar 

  25. Huang, X. et al. In situ formation of crystallographically oriented semiconductor nanowire arrays via selective vaporization for optoelectronic applications. Adv. Mater. 28, 7603–7612 (2016).

    CAS  PubMed  Google Scholar 

  26. Wang, Z.-J. et al. Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 9, 1506–1519 (2015).

    CAS  PubMed  Google Scholar 

  27. Blume, R. et al. The influence of intercalated oxygen on the properties of graphene on polycrystalline Cu under various environmental conditions. Phys. Chem. Chem. Phys. 16, 25989–26003 (2014).

    CAS  PubMed  Google Scholar 

  28. Wang, Z.-J. et al. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging. Nat. Commun. 7, 13256 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Voss, C. & Kruse, N. Oscillatory behavior in the catalytic reduction of NO and NO2 with hydrogen on Pt field emitter tips. Appl. Surf. Sci. 94-95, 186–193 (1996).

    Google Scholar 

  30. McEwen, J.-S. et al. Catalytic reduction of NO2 with hydrogen on Pt field emitter tips: kinetic instabilities on the nanoscale. Langmuir 26, 16381–16391 (2010).

    CAS  PubMed  Google Scholar 

  31. Barroo, C., De Decker, Y., Visart de Bocarmé, T. & Kruse, N. Complex oscillations patterns during the catalytic hydrogenation of NO2 over platinum nano-sized crystals. J. Phys. Chem. C. 118, 6839–6846 (2014).

    CAS  Google Scholar 

  32. Barroo, C., De Decker, Y., Visart de Bocarmé, T. & Gaspard, P. Fluctuating dynamics of nanoscale chemical oscillations: theory and experiments. J. Phys. Chem. Lett. 6, 2189–2193 (2015).

    CAS  PubMed  Google Scholar 

  33. Barroo, C., De Decker, Y., Visart de Bocarmé, T. & Kruse, N. Emergence of chemical oscillations from nanosized target patterns. Phys. Rev. Lett. 117, 144501 (2016).

    PubMed  Google Scholar 

  34. Segner, J., Vielhaber, W. & Ertl, G. Interaction of NO2 with a Pt(111) Surface. Isr. J. Chem. 22, 375–379 (1982).

    CAS  Google Scholar 

  35. Parker, D. H., Bartram, M. E. & Koel, B. E. Study of high coverages of atomic oxygen on the Pt(111) surface. Surf. Sci. 217, 489–510 (1989).

    CAS  Google Scholar 

  36. Barroo, C., Voorsluijs, V., Visart de Bocarmé, T., Gaspard, P. & De Decker, Y. Reconstructing stochastic attractors from nanoscale experiments on a non-equilibrium reaction. Phys. Chem. Chem. Phys. 20, 21302–21312 (2018).

    CAS  PubMed  Google Scholar 

  37. Lewis, R. & Gomer, R. Adsorption of oxygen on platinum. Surf. Sci. 12, 157–176 (1968).

    CAS  Google Scholar 

  38. Dawson, P. T. & Peng, Y. K. The adsorption, desorption, and exchange reactions of oxygen, hydrogen, and water on platinum surfaces: IV. Field emission studies on the adsorption of water, hydrogen and the reaction between hydrogen and adsorbed oxygen. Surf. Sci. 92, 1–13 (1980).

    CAS  Google Scholar 

  39. Kiskinova, M., Pirug, G. & Bonzel, H. P. NO adsorption on Pt(111). Surf. Sci. 136, 285–295 (1984).

    CAS  Google Scholar 

  40. Bartram, M. E., Windham, R. G. & Koel, B. E. The molecular adsorption of nitrogen dioxide on Pt(111) studied by temperature programmed desorption and vibrational spectroscopy. Surf. Sci. 184, 57–74 (1987).

    CAS  Google Scholar 

  41. Huang, W. et al. Decomposition of NO2 on Pt(110): formation of a new oxygen adsorption state. Surf. Sci. 506, L287–L292 (2002).

    CAS  Google Scholar 

  42. Danilatos, G. D. Theory of the gaseous detector device in the environmental scanning electron microscope. Adv. Electron. Electron Phys. 78, 1–102 (1990).

    Google Scholar 

  43. Graham, M. D. et al. Effects of boundaries on pattern formation: catalytic oxidation of CO on platinum. Science 264, 80–82 (1994).

    CAS  PubMed  Google Scholar 

  44. Asakura, K., Lauterbach, J., Rotermund, H. H. & Ertl, G. Spatiotemporal concentration patterns associated with the catalytic oxidation of CO and Au Covered Pt(110) Surfaces. J. Chem. Phys. 102, 8175–8184 (1995).

    CAS  Google Scholar 

  45. Heras, J. M. & Viscido, L. Work function changes upon water contamination of metal surfaces. Appl. Surf. Sci. 4, 238–241 (1980).

    CAS  Google Scholar 

  46. Karma, A. Meandering transition in two-dimensional excitable media. Phys. Rev. Lett. 65, 2824 (1990).

    CAS  PubMed  Google Scholar 

  47. Suchorski, Y. et al. Visualizing catalyst heterogeneity by a multifrequential oscillating reaction. Nat. Commun. 9, 600 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Cox, M. P., Ertl, G. & Imbihl, R. Spatial self-organization of surface structure during an oscillating catalytic reaction. Phys. Rev. Lett. 54, 1725–1728 (1985).

    PubMed  Google Scholar 

  49. Jakubith, S., Rotermund, H.-H., Engel, W., von Oertzen, A. & Ertl, G. Spatiotemporal concentration patterns in a surface reaction: propagating and standing waves, rotating spirals, and turbulence. Phys. Rev. Lett. 65, 3013 (1990).

    CAS  PubMed  Google Scholar 

  50. Panfilov, A. & Hogeweg, P. Spiral breakup in a modified FitzHugh–Nagumo model. Phys. Lett. A 176, 295–299 (1993).

    Google Scholar 

  51. Fantauzzi, D., Mueller, J. E., Sabo, L., van Duin, A. C. T. & Jacob, T. Surface buckling and subsurface oxygen: atomistic insights into the surface oxidation of Pt(111). ChemPhysChem 16, 2797–2802 (2015).

    CAS  PubMed  Google Scholar 

  52. Rotermund, H. H., Pollman, M. & Kevrekidis, I. G. Pattern formation during the CO-oxidation involving subsurface oxygen. Chaos 12, 157–163 (2002).

    CAS  PubMed  Google Scholar 

  53. Banbury, J. R. A versatile ultrahigh vacuum scanning electron microscope. J. Phys. E 5, 798–802 (1972).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge Dr Karsten Kunze for recording the EBSD map and ScopeM for the use of the equipment. C.B. thanks the Fonds de la Recherche Scientifique (F.R.S.-FNRS) and Wallonie–Bruxelles International (Excellence grant WBI.WORLD) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

C.B., Z.-J.W. and M.-G.W. designed and performed the experiments and analysed the data. Z.-J.W. and M.-G.W. modified the ESEM set-up for in situ observations of gas–solid interactions. All authors contributed to the writing of the manuscript, and all authors have given approval to the final version.

Corresponding authors

Correspondence to Cédric Barroo, Zhu-Jun Wang or Marc-Georg Willinger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3

Supplementary Video 1

An in situ SEM movie that shows the initiation of nonlinear behaviours. Hydrogen was slowly added to the NO2 flow during the experiment. The recording of the movie started at the moment where surface reactivity could be detected. The flow of H2 was fixed at this point. The movie shows propagating reaction fronts and grain-dependent dynamics, it also illustrates the presence of spillover effects that stimulate reactivity on initially non-reactive grains. The movie plays at 7 fps and shows the dynamics observed during 13 min. The images were recorded at a scanning speed of 2.86 s per frame. Experimental conditions: T = 175 °C, \(p_{{\mathrm{NO}}_2}\):\(p_{{\mathrm{H}}_{\mathrm{2}}}\) ≈ 1:10, Pto ≈ 10−2 Pa.

Supplementary Video 2

A mobile phone movie that was recorded while a small subframe of around 75 × 75 pixels was scanned at a pixel dwell time of 0.3 µs. A mobile phone was used because the ESEM does not currently allow recording of such subframes. Scanning at a reduced pixel resolution allows imaging at several hundred frames per second and thus allows us to capture relatively fast propagating wavefronts without aliasing artefacts.

Supplementary Video 3

An in situ SEM movie that shows propagating reaction fronts and meandering spiral waves. The movie plays at 7 fps and individual images were recorded at a scanning speed one frame per 0.97 s. Experimental conditions: \(p{\mathrm{NH}_2}:p{\mathrm{H}_2}\)≈ 1:8, ptot = 8.7 × 10−3 Pa, T = 192 °C.

Supplementary Video 4

Surface reactivity and propagation of reaction fronts during NO2 hydrogenation on a polycrystalline platinum foil recorded at a total pressure of 13 Pa. The movie plays at 7 fps, individual images were recorded at a scanning speed of one frame per 2.86 s.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barroo, C., Wang, ZJ., Schlögl, R. et al. Imaging the dynamics of catalysed surface reactions by in situ scanning electron microscopy. Nat Catal 3, 30–39 (2020). https://doi.org/10.1038/s41929-019-0395-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0395-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing