Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An air-stable binary Ni(0)–olefin catalyst

Abstract

Nickel catalysis has become a growing and empowering area of research in recent years, providing new reactivity modes towards organic synthesis. In these endeavours, Ni(COD)2 (bis(1,5-cyclooctadiene)Ni(0)) vastly dominated this area, thus becoming the main source of Ni(0) for exploring new catalytic reactivity. However, all known Ni(0)–olefin precatalysts suffer from great instability and fast decomposition when exposed to air. With the aim of providing fast and facile technologies for practitioners, herein we report the synthesis, characterization and reactivity of an air stable binary Ni(0)–olefin complex, Ni(Fstb)3. This 16-electron complex features a unique arrangement of simple ligands that shield the nickel centre from oxygen. We demonstrate that Ni(Fstb)3 is an excellent precatalyst in a wide variety of important nickel-catalysed transformations and has unexpected catalytic properties compared with other Ni(0)–olefin complexes. As a general, practical and air-stable Ni(0) precursor, Ni(Fstb)3 represents a solution to a 60-year quest.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ni(0) catalysts.
Fig. 2: Complexes 1 and 2.
Fig. 3: Ligand exchange of complex 2 with different ligands.
Fig. 4: Catalytic properties of 2 in a variety of nickel-catalysed transformations.
Fig. 5: Avoiding deactivation pathways.

Similar content being viewed by others

Data availability

The Supplementary Information contains all experimental procedures and analytical data (1H, 19F, 31P, 13C NMR, high-resolution mass spectrometry elemental analysis and crystallographic data) for all of the new compounds. Crystallographic data for compounds 1 (CCDC: 1944830), 2 (CCDC: 1944831), 4 (CCDC: 1944832), 5 (CCDC: 1944833), 6 (CCDC: 1944834) and 7 (CCDC: 1944835) can be downloaded free of charge from the Cambridge Crystallographic Data Centre (www.ccdc.cam.ac.uk).

References

  1. Wilke, G. Hauptversammlung der gesellschaft Deutscher chemiker. Angew. Chem. 72, 565–593 (1960).

    Google Scholar 

  2. Wilke, G. Cyclooligomerisation von butadien und übergangsmetall-π-komplexe. Angew. Chem. 75, 10–20 (1963).

    CAS  Google Scholar 

  3. Tasker, S., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous catalysis. Nature 509, 299–309 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 1–18 (2017).

    Google Scholar 

  5. Percec, V., Pugh, C., Cramer, E., Okita, S. & Weiss, R. Pd(0) and Ni(0) catalyzed polymerization reactions. Makromol. Chem. Macromol. Symposia 54-55, 113–150 (1992).

    Google Scholar 

  6. Lascelles, K., Morgan, L. G., Nicholls, D. & Beyersmann, D. Ullmann’s Encyclopedia of Industrial Chemistry Vol. 24 (Wiley-VCH, 2000).

  7. Carnes, M. et al. A stable tetraalkyl complex of nickel(iv). Angew. Chem. Int. Ed. 48, 290–294 (2009).

    CAS  Google Scholar 

  8. Hazari, N., Melvin, P. R. & Beromi, M. M. Well-defined nickel and palladium precatalysts for cross-coupling. Nat. Rev. Chem. 1, 0025 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Park, N. H., Teverovskiy, G. & Buchwald, S. L. Development of an air-stable nickel precatalyst for the amination of aryl chlorides, sulfamates, mesylates, and triflates. Org. Lett. 16, 220–223 (2014).

    CAS  PubMed  Google Scholar 

  10. Ge, S. & Hartwig, J. F. Highly reactive, single-component nickel catalyst precursor for Suzuki–Miyaura cross-coupling of heteroaryl boronic acids with heteroaryl halides. Angew. Chem. Int. Ed. 51, 12837–12841 (2012).

    CAS  Google Scholar 

  11. Melineni, J., Jezorek, R. L., Zhang, N. & Percec, V. NiIICl(1-Naphthyl)(PCy3)2, an air-stable σ‒NiII precatalyst for quantitative cross-coupling of aryl C‒O electrophiles with aryl neopentylglycolboronates. Synthesis 48, 2808–2815 (2016).

    Google Scholar 

  12. Standley, E. A. & Jamison, T. F. Simplifying nickel(0) catalysis: an air-stable nickel precatalyst for the internally selective benzylation of terminal alkenes. J. Am. Chem. Soc. 135, 1585–1592 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zim, D., Lando, V. R., Dupont, J. & Monteiro, A. L. NiCl2(PCy3)2: a simple and efficient catalyst precursor for the Suzuki cross-coupling of aryl tosylates and arylboronic acids. Org. Lett. 3, 3049–3051 (2001).

    CAS  PubMed  Google Scholar 

  14. Nett, A. J. et al. Stable, well-defined nickel(0) catalysts for catalytic C‒C and C‒N bond formation. ACS Catal. 9, 6606–6611 (2018).

    Google Scholar 

  15. Kampmann, S. S., Sobolev, A. N., Koutsantonis, G. A. & Stewart, S. G. Stable nickel(0) phosphites as catalysts for C‒N cross-coupling reactions. Adv. Synth. Catal. 9, 1967–1973 (2014).

    Google Scholar 

  16. Shields, J. D., Gray, E. E. & Doyle, A. G. A modular, air-stable nickel precatalyst. Org. Lett. 17, 2166–2169 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Magano, J. & Monfette, S. Development of an air-stable, broadly applicable nickel source for nickel-catalyzed cross-coupling. ACS Catal. 5, 3120–3123 (2015).

    CAS  Google Scholar 

  18. Beromi, M. M. et al. Modifications to the aryl group of dppf-ligated Ni σ-aryl precatalysts: impact on speciation and catalytic activity in Suzuki–Miyaura coupling reactions. Organometallics 37, 3943–3945 (2018).

    PubMed  PubMed Central  Google Scholar 

  19. Dander, J. E., Weires, N. A. & Garg, N. K. Benchtop delivery of Ni(COD)2 using paraffin capsules. Org. Lett. 18, 3934–3936 (2016).

    CAS  PubMed  Google Scholar 

  20. Nattmann, L., Lutz, S., Ortsack, P., Goddard, R. & Cornella, J. A highly reduced Ni–Li–olefin complex for catalytic Kumada–Corriu cross-couplings. J. Am. Chem. Soc. 140, 13628–13633 (2018).

    CAS  PubMed  Google Scholar 

  21. Jolly, P. W. The Organic Chemistry of Nickel 1st edn (Elsevier, 1974).

  22. Wilke, G., Müller, E. W., Kröner, M., Heimbach, P. & Breil, H. Verfahren zur Herstellung von CO- und NO-freien Komplexverbindungen der Übergangsmetalle. Deutsche Patentschrift (DE1191375, 1965).

  23. Brauer, D. J. & Krüger, C. The three-dimensional structure of trans,trans,trans-1,5,9-cyclododecatrienenickel. J. Organometal. Chem. 44, 397–402 (1972).

    CAS  Google Scholar 

  24. Dierks, H. & Dietrich, H. Die kristallstruktur von bis-cyclooctadien-1,5-nickel(0). Z. für Kristall. 122, 1–23 (1965).

    CAS  Google Scholar 

  25. Wilke, G. Contributions to organonickel chemistry. Angew. Chem. Int. Ed. 27, 185–206 (1988).

    Google Scholar 

  26. Johnson, J. B. & Rovis, T. More than bystanders: the effect of olefins on transition‐metal‐catalyzed cross-coupling reactions. Angew. Chem. Int. Ed. 47, 840–871 (2008).

    CAS  Google Scholar 

  27. Tamaru, Y. Modern Organonickel Chemistry 1st edn (Wiley-VCH, 2005).

  28. Birkholz, M., Freixa, P. W. N., van Leeuwen. & Bite angle effects of diphosphines in C‒C and C‒X bond forming cross-coupling reactions. Chem. Soc. Rev. 38, 1099–1118 (2009)..

  29. Yin, G., Kalvet, I., Englert, U. & Schoenebeck, F. Fundamental studies and development of nickel-catalyzed trifluoromethylthiolation of aryl chlorides: active catalytic species and key roles of ligand and traceless MeCN additive revealed. J. Am. Chem. Soc. 137, 4164–4172 (2015).

    CAS  PubMed  Google Scholar 

  30. Desnoyer, A. N. et al. The importance of ligand-induced backdonation in the stabilization of square planar d 10 nickel π-complexes. Chem. Eur. J. 25, 5259–5268 (2019).

    CAS  PubMed  Google Scholar 

  31. Staudaher, N. D., Stolley, R. M. & Louie, J. Synthesis, mechanism of formation, and catalytic activity of Xantphos nickel π-complexes. Chem. Commun. 50, 15577–15580 (2014).

    CAS  Google Scholar 

  32. Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, 152–162 (2017).

    CAS  Google Scholar 

  33. Dinjus, E., Walther, D., Kaiser, J., Sieler, J. & Thanh, N. N. 2,2’-Dipyridiyl-1,5-cyclooctadiennickel(0): kristall- und molekülstruktur. J. Organometal. Chem. 236, 123–130 (1982).

    CAS  Google Scholar 

  34. Magano, J. & Dunetz, J. R. Transition Metal-Catalyzed Couplings in Process Chemistry: Case Studies from the Pharmaceutical Industry (Wiley-VCH, 2013).

  35. Ohashi, M., Takeda, I., Ikawa, M. & Ogoshi, S. Nickel-catalyzed dehydrogenative [4+2] cycloaddition of 1,3-dienes. J. Am. Chem. Soc. 133, 18018–18021 (2011).

    CAS  PubMed  Google Scholar 

  36. Harry, N. A., Saranaya, S., Ujwaldev, S. M. & Anilkumar, G. Recent advances and prospects in nickel-catalyzed C‒H activation. Catal. Sci. Technol. 9, 1726–1743 (2019).

    CAS  Google Scholar 

  37. Shiota, H., Ano, Y., Aihara, Y., Fukumoto, Y. & Chatani, N. Nickel-catalyzed chelation-assisted transformations involving ortho C‒H bond activation: regioselective oxidative cycloaddition of aromatic amides to alkynes. J. Am. Chem. Soc. 133, 14952–14955 (2011).

    CAS  PubMed  Google Scholar 

  38. Baranano, D., Mann, G. & Hartwig, J. F. Nickel and palladium-catalyzed cross-couplings that form carbon-heteroatom and carbon-element bonds. Curr. Org. Chem. 1, 287–305 (1997).

    CAS  Google Scholar 

  39. Wolfe, J. P. & Buchwald, S. L. Nickel-catalyzed amination of aryl chlorides. J. Am. Chem. Soc. 119, 6054–6058 (1997).

    CAS  Google Scholar 

  40. Graham, T. J. A. & Doyle, A. G. Nickel-catalyzed cross-coupling of chromene acetals and boronic acids. Org. Lett. 14, 1616–1619 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dander, J. E. & Garg, N. K. Breaking amides using nickel catalysis. ACS Catal. 7, 1413–1423 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hie, L. et al. Nickel-catalyzed esterification of aliphatic amides. Angew. Chem. Int. Ed. 55, 15129–15132 (2016).

    CAS  Google Scholar 

  43. Zhou, J. & Fu, G. C. Cross-coupling of unactivated secondary alkyl halides: room-temperature nickel-catalyzed Negishi reactions of alkyl bromides and iodides. J. Am. Chem. Soc. 125, 14726–14727 (2003).

    CAS  PubMed  Google Scholar 

  44. Johnson, J. B., Bercot, E. A., Rowley, J. M., Coates, G. W. & Rovis, T. Ligand-dependent catalytic cycle and role of styrene in nickel-catalyzed anhydride cross-coupling: evidence for turnover-limiting reductive elimination. J. Am. Chem. Soc. 129, 2718–2725 (2007).

    CAS  PubMed  Google Scholar 

  45. Barbero, N. & Martin, R. Ligand-free Ni-catalyzed reductive cleavage of inert carbon–sulfur bonds. Org. Lett. 14, 796–799 (2012).

    CAS  PubMed  Google Scholar 

  46. Matsubara, R., Gutierrez, A. C. & Jamison, T. F. Nickel-catalyzed Heck-type reactions of benzyl chlorides and simple olefins. J. Am. Chem. Soc. 133, 19020–19023 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Terao, J., Watanabe, H., Ikumi, A., Kuniyasu, H. & Kambe, N. Nickel-catalyzed cross-coupling reaction of Grignard reagents with alkyl halides and tosylates: remarkable effect of 1,3-butadienes. J. Am. Chem. Soc. 124, 4222–4223 (2003).

    Google Scholar 

  48. Bair, J. S. et al. Linear-selective hydroarylation of unactivated terminal and internal olefins with trifluoromethyl-susbtituted arenes. J. Am. Chem. Soc. 136, 13098–13101 (2014).

    CAS  PubMed  Google Scholar 

  49. Schramm, Y., Takeuchi, M., Semba, K., Nakao, Y. & Hartwig, J. F. Anti-Markovnikov hydroheteroarylation of unactivated alkenes with indoles, pyrroles, benzofurans, and furans catalyzed by a nickel-N-heterocyclic carbene system. J. Am. Chem. Soc. 137, 12215–12218 (2015).

    CAS  PubMed  Google Scholar 

  50. Nett, A. J., Zhao, W., Zimmerman, P. M. & Montgomery, J. Highly active nickel catalysts for C‒H functionalization identified through analysis of off-cycle intermediates. J. Am. Chem. Soc. 137, 7636–7639 (2015).

    CAS  PubMed  Google Scholar 

  51. Nakao, Y., Kashihara, N., Kanyiva, K. S. & Hiyama, T. Nickel-catalyzed alkenylation and alkylation of fluoroarenes via activation of C‒H bond over C‒F bond. J. Am. Chem. Soc. 130, 16170–16171 (2008).

    CAS  PubMed  Google Scholar 

  52. Wu, J., Faller, J. A., Hazari, N. & Schmeier, T. J. Stoichiometric and catalytic reactions of thermally stable nickel(0) NHC complexes. Organometallics 31, 806–809 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by Max-Planck-Gesellschaft, Max-Planck-Institut für Kohlenforschung and Fonds der Chemischen Industrie (FCI-VCI). R.S. thanks the Ludwig-Maximilians University of Munich for the “Fakultäts-Unterstützung zur individuellen Studiengestaltung”. We thank S. Lutz and J. Busch for help in the preparation of Ni(CDT). We are thankful to M. Leutzsch for help in the NMR and R. Goddard for X-Ray support and proofreading the manuscript. We also thank A. Fürstner for insightful discussions and generous support.

Author information

Authors and Affiliations

Authors

Contributions

L.N. designed the approach and performed the experiments, analysed the experimental data and prepared the Supplementary Information. R.S. expanded the applicability of the catalyst to a variety of nickel-catalysed transformations. N.N. analysed and acquired the crystallographic data of the nickel complexes. J.C. directed the investigations and prepared the manuscript.

Corresponding author

Correspondence to Josep Cornella.

Ethics declarations

Competing interests

A patent disclosing the synthesis, characterization and application of the catalysts has been filed (patent no. EP19189236.3, Germany).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods and references

Compound 1

Crystallographic data for compound 1

Compound 2

Crystallographic data for compound 2

Compound 4

Crystallographic data for compound 4

Compound 5

Crystallographic data for compound 5

Compound 6

Crystallographic data for compound 6

Compound 7

Crystallographic data for compound 7

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nattmann, L., Saeb, R., Nöthling, N. et al. An air-stable binary Ni(0)–olefin catalyst. Nat Catal 3, 6–13 (2020). https://doi.org/10.1038/s41929-019-0392-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0392-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing