Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Carbon monoxide electroreduction as an emerging platform for carbon utilization

Abstract

The electrochemical conversion of carbon dioxide to value-added chemical products has been heavily explored as a promising strategy for carbon utilization. However, the direct synthesis of multi-carbon (C2+) products suffers from undesired side reactions and relatively low selectivity. Electrochemically converting CO2 to single-carbon products is much more effective and being commercially deployed. Recent studies have shown that CO can be electrochemically transformed further to C2+ at high reaction rates, high C2+ selectivity and inherently improved electrolyte stability, raising the prospect of a two-step pathway to transform CO2. In this Perspective, the progress towards high-rate CO conversion is shown alongside mechanistic insights and device designs that can improve performance even further. A techno-economic analysis of the two-step conversion process and cradle-to-gate lifecycle assessment shows the economic feasibility and improved environmental impact of a high-volume commercial process generating acetic acid and ethylene compared to the current state of the art.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Overview of two-step CO2R process and current state of direct CO2R.
Fig. 2: Performance of state-of-the-art COR cells with reported performance at high rates (>100 mA cm–2 total current density).
Fig. 3: Mechanism of COR.
Fig. 4: Current and proposed COR electrolyser designs.
Fig. 5: TEA and LCA for complete CO2 conversion with COR.

References

  1. IPCC Global warming of 1.5 °C (eds. Zhai, P. et al.) (World Meteorological Organization, 2018).

  2. Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

    PubMed  Google Scholar 

  3. Ryan, H. W. & Mark, B. 2017 Wind Technologies Market Report (US DOE, 2018).

  4. Haegel, N. M. et al. Terawatt-scale photovoltaics: Trajectories and challenges. Science 356, 141–143 (2017).

    CAS  PubMed  Google Scholar 

  5. Katelhon, A., Meys, R., Deutz, S., Suh, S. & Bardow, A. Climate change mitigation potential of carbon capture and utilization in the chemical industry. Proc. Natl Acad. Sci. USA 116, 11187–11194 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    PubMed  Google Scholar 

  7. Chen, C., Khosrowabadi Kotyk, J. F. & Sheehan, S. W. Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 4, 2571–2586 (2018).

    CAS  Google Scholar 

  8. Jiang, K. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11, 893–903 (2018).

    CAS  Google Scholar 

  9. Dinh, C.-T., García de Arquer, F. P., Sinton, D. & Sargent, E. H. High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media. ACS Energy Lett. 3, 2835–2840 (2018).

    CAS  Google Scholar 

  10. Liu, Z., Yang, H., Kutz, R. & Masel, R. I. CO2 Electrolysis to CO and O2 at high selectivity, stability and efficiency using sustainion membranes. J. Electrochem. Soc. 165, J3371–J3377 (2018).

    CAS  Google Scholar 

  11. Verma, S. et al. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Lett. 3, 193–198 (2017).

    Google Scholar 

  12. Li, Y. C. et al. CO2 Electroreduction from carbonate electrolyte. ACS Energy Lett. 4, 1427–1431 (2019).

    CAS  Google Scholar 

  13. Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    CAS  Google Scholar 

  14. Zheng, Y. et al. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141, 7646–7659 (2019).

    CAS  PubMed  Google Scholar 

  15. Raciti, D. & Wang, C. Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Lett. 3, 1545–1556 (2018).

    CAS  Google Scholar 

  16. Zhang, H., Li, J., Cheng, M.-J. & Lu, Q. CO Electroreduction: current development and understanding of Cu-based catalysts. ACS Catal. 9, 49–65 (2018).

    Google Scholar 

  17. Jouny, M., Luc, W. & Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 1, 748–755 (2018).

    CAS  Google Scholar 

  18. Luc, W. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2, 423–430 (2019).

    CAS  Google Scholar 

  19. Ripatti, D. S., Veltman, T. R. & Kanan, M. W. Carbon monoxide gas diffusion electrolysis that produces concentrated C2 products with high single-pass conversion. Joule 3, 240–256 (2019).

    CAS  Google Scholar 

  20. Li, J. et al. Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 9, 4614 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. Zhuang, T.-T. et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Catal. 1, 946–951 (2018).

    CAS  Google Scholar 

  22. Pang, Y. et al. Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nat. Catal. 2, 251–258 (2019).

    CAS  Google Scholar 

  23. Jouny, M. et al. Formation of carbon-nitrogen bonds in carbon monoxide electrolysis. Nat. Chem. 11, 846–851 (2019).

    CAS  PubMed  Google Scholar 

  24. Bierhals, J. Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH, 2001).

  25. Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    CAS  PubMed  Google Scholar 

  26. Hoang, T. T. H., Ma, S., Gold, J. I., Kenis, P. J. A. & Gewirth, A. A. Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis. ACS Catal. 7, 3313–3321 (2017).

    CAS  Google Scholar 

  27. Hoang, T. T. H. et al. Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018).

    CAS  PubMed  Google Scholar 

  28. Ma, S. et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 301, 219–228 (2016).

    CAS  Google Scholar 

  29. Lv, J. J. et al. A highly porous copper electrocatalyst for carbon dioxide reduction. Adv. Mater. 30, e1803111 (2018).

    PubMed  Google Scholar 

  30. Weng, L. C., Bell, A. T. & Weber, A. Z. Towards membrane-electrode assembly systems for CO2 reduction: a modeling study. Energy Environ. Sci. 12, 1950–1968 (2019).

    CAS  Google Scholar 

  31. Li, Y. C. et al. Electrolysis of CO2 to syngas in bipolar membrane-based electrochemical cells. ACS Energy Lett. 1, 1149–1153 (2016).

    CAS  Google Scholar 

  32. Mi, Y. et al. Selective electroreduction of CO2 to C2 products over Cu3N‐derived Cu nanowires. ChemElectroChem 6, 2393–2397 (2019).

    CAS  Google Scholar 

  33. De Luna, P. et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018).

    Google Scholar 

  34. Jiang, K. et al. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 1, 111–119 (2018).

    CAS  Google Scholar 

  35. Ren, D. et al. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 5, 2814–2821 (2015).

    CAS  Google Scholar 

  36. Gao, D. et al. Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano 11, 4825–4831 (2017).

    CAS  PubMed  Google Scholar 

  37. Mistry, H. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 12123 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Kim, J. et al. Branched copper oxide nanoparticles induce highly selective ethylene production by electrochemical carbon dioxide reduction. J. Am. Chem. Soc. 141, 6986–6994 (2019).

    CAS  PubMed  Google Scholar 

  39. Kim, D., Kley, C. S., Li, Y. & Yang, P. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc. Natl Acad. Sci. USA 114, 10560–10565 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Produce your own carbon monoxide. Haldor Topsoe www.topsoe.com/processes/carbon-monoxide/site-carbon-monoxide (accessed 11 October 2019).

  41. Hori, Y., Takahashi, R., Yoshinami, Y. & Murata, A. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101, 7075–7081 (1997).

    CAS  Google Scholar 

  42. Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    CAS  PubMed  Google Scholar 

  43. Verdaguer-Casadevall, A. et al. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 137, 9808–9811 (2015).

    CAS  PubMed  Google Scholar 

  44. Bertheussen, E. et al. Acetaldehyde as an intermediate in the electroreduction of carbon monoxide to ethanol on oxide-derived copper. Angew. Chem. Int. Ed. 55, 1450–1454 (2016).

    CAS  Google Scholar 

  45. Kortlever, R., Shen, J., Schouten, K. J., Calle-Vallejo, F. & Koper, M. T. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    CAS  PubMed  Google Scholar 

  46. Cheng, T., Xiao, H. & Goddard, W. A. III. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl Acad. Sci. USA 114, 1795–1800 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Garza, A. J., Bell, A. T. & Head-Gordon, M. Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 8, 1490–1499 (2018).

    CAS  Google Scholar 

  48. Lum, Y., Cheng, T., Goddard, W. A. III & Ager, J. W. Electrochemical CO reduction builds solvent water into oxygenate products. J. Am. Chem. Soc. 140, 9337–9340 (2018).

    CAS  PubMed  Google Scholar 

  49. Cheng, T., Fortunelli, A. & Goddard, W. A. III. Reaction intermediates during operando electrocatalysis identified from full solvent quantum mechanics molecular dynamics. Proc. Natl Acad. Sci. USA 116, 7718–7722 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Birdja, Y. Y. & Koper, M. T. The Importance of cannizzaro-type reactions during electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 139, 2030–2034 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Clark, E. L., Hahn, C., Jaramillo, T. F. & Bell, A. T. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J. Am. Chem. Soc. 139, 15848–15857 (2017).

    CAS  PubMed  Google Scholar 

  52. Clark, E. L. et al. Explaining the incorporation of oxygen derived from solvent water into the oxygenated products of CO reduction over Cu. J. Am. Chem. Soc. 141, 4191–4193 (2019).

    CAS  PubMed  Google Scholar 

  53. Clark, E. L. & Bell, A. T. Direct observation of the local reaction environment during the electrochemical reduction of CO2. J. Am. Chem. Soc. 140, 7012–7020 (2018).

    CAS  PubMed  Google Scholar 

  54. Weekes, D. M., Salvatore, D. A., Reyes, A., Huang, A. & Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51, 910–918 (2018).

    CAS  PubMed  Google Scholar 

  55. Higgins, D., Hahn, C., Xiang, C., Jaramillo, T. F. & Weber, A. Z. Gas-diffusion electrodes for carbon dioxide reduction: a new paradigm. ACS Energy Lett. 4, 317–324 (2018).

    Google Scholar 

  56. Whipple, D. T., Finke, E. C. & Kenis, P. J. Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH. Electrochem. Solid State Lett. 13, B109–B111 (2010).

    CAS  Google Scholar 

  57. Dinh, C.-T., Li, Y. C. & Sargent, E. H. Boosting the single-pass conversion for renewable chemical electrosynthesis. Joule 3, 13–15 (2019).

    Google Scholar 

  58. Yang, H., Kaczur, J. J., Sajjad, S. D. & Masel, R. I. Electrochemical conversion of CO2 to formic acid utilizing Sustainion™ membranes. J. CO 2 Util. 20, 208–217 (2017).

  59. Altarawneh, R. M. & Pickup, P. G. Product distributions and efficiencies for ethanol oxidation in a proton exchange membrane electrolysis cell. J. Electrochem. Soc. 164, F861–F865 (2017).

    CAS  Google Scholar 

  60. US Life Cycle Inventory Database (National Renewable Energy Laboratory, accessed 2 September 2019); www.lcacommons.gov/lca-collaboration/search

  61. Schlömer S. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (IPCC, Cambridge Univ. Press, 2014).

  62. Luc, W. et al. SO2-induced selectivity change in CO2 electroreduction. J. Am. Chem. Soc. 141, 9902–9909 (2019).

    CAS  PubMed  Google Scholar 

  63. Verma, S., Lu, S. & Kenis, P. J. A. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nat. Energy 4, 466–474 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge M. L. Hutchings (Yale University) for assistance in figure preparation. This material is based on work supported by the Department of Energy under award no. DE-FE0029868. The authors at the University of Delaware also thank the National Science Foundation for financial support (award no. CBET-1803200). G.S.H. acknowledges the support of the University of Delaware Blue Hen Proof of Concept programme.

Author information

Authors and Affiliations

Authors

Contributions

M.J. and G.S.H. contributed equally to this work. M.J., G.S.H. and F.J. performed data analysis and wrote the manuscript. F.J. supervised the whole project.

Corresponding authors

Correspondence to Gregory S. Hutchings or Feng Jiao.

Ethics declarations

Competing interests

G.S.H. and F.J. are co-founders of Lectrolyst, a company developing devices for electrocatalytic conversion including carbon monoxide reduction.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1,2, Tables 1–3, Notes 1,2 and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jouny, M., Hutchings, G.S. & Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat Catal 2, 1062–1070 (2019). https://doi.org/10.1038/s41929-019-0388-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0388-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing