Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction


The availability of inexpensive industrial CO gas streams motivates efficient electrocatalytic upgrading of CO to higher-value feedstocks such as ethylene. However, the electrosynthesis of ethylene by the CO reduction reaction (CORR) has suffered from low selectivity and energy efficiency. Here we find that the recent strategy of increasing performance through use of highly alkaline electrolyte—which is very effective in CO2RR—fails in CORR and drives the reaction to acetate. We then observe that ethylene selectivity increases when we constrain (decrease) CO availability. Using density functional theory, we show how CO coverage on copper influences the reaction pathways of ethylene versus oxygenate: lower CO coverage stabilizes the ethylene-relevant intermediates whereas higher CO coverage favours oxygenate formation. We then control local CO availability experimentally by tuning the CO concentration and reaction rate; we achieve ethylene Faradaic efficiencies of 72% and a partial current density of >800 mA cm−2. The overall system provides a half-cell energy efficiency of 44% for ethylene production.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The influence of the KOH concentration on CO reduction.
Fig. 2: DFT calculation results on effects of *CO coverage.
Fig. 3: Characterization of the copper electrocatalysts.
Fig. 4: The performance of the CORR as a function of CO coverage.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.


  1. 1.

    Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    PubMed  Google Scholar 

  2. 2.

    Zhang, L., Zhao, Z. J. & Gong, J. L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem. Int. Ed. 56, 11326–11353 (2017).

    CAS  Google Scholar 

  3. 3.

    Zheng, X. L. et al. Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials. Nat. Catal. 2, 55–61 (2019).

    CAS  Google Scholar 

  4. 4.

    Dinh, C. T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    CAS  PubMed  Google Scholar 

  5. 5.

    De Luna, P. et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018).

    Google Scholar 

  6. 6.

    Zhuang, T. T. et al. Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1, 421–428 (2018).

    CAS  Google Scholar 

  7. 7.

    Zhou, Y. S. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10, 974–980 (2018).

    CAS  PubMed  Google Scholar 

  8. 8.

    Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    CAS  PubMed  Google Scholar 

  9. 9.

    Jouny, M., Luc, W. & Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 1, 748–755 (2018).

    CAS  Google Scholar 

  10. 10.

    Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    CAS  PubMed  Google Scholar 

  11. 11.

    Haas, T., Krause, R., Weber, R., Demler, M. & Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018).

    CAS  Google Scholar 

  12. 12.

    Schreier, M. et al. Solar conversion of CO2 to CO using earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nat. Energy 2, 17087 (2017).

    CAS  Google Scholar 

  13. 13.

    Li, J. et al. Efficient electrocatalytic CO2 reduction on a three-phase interface. Nat. Catal. 1, 592–600 (2018).

    CAS  Google Scholar 

  14. 14.

    Spurgeon, J. M. & Kumar, B. A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy Environ. Sci. 11, 1536–1551 (2018).

    CAS  Google Scholar 

  15. 15.

    Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    CAS  Google Scholar 

  16. 16.

    Han, L. H., Zhou, W. & Xiang, C. X. High-rate electrochemical reduction of carbon monoxide to ethylene using Cu-nanoparticle-based gas diffusion electrodes. ACS Energy Lett. 3, 855–860 (2018).

    CAS  Google Scholar 

  17. 17.

    Zhuang, T. T. et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Catal. 1, 946–951 (2018).

    CAS  Google Scholar 

  18. 18.

    Pang, Y. J. et al. Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nat. Catal. 2, 251–258 (2019).

    CAS  Google Scholar 

  19. 19.

    Li, J. et al. Effectively increased efficiency for electroreduction of carbon monoxide using supported polycrystalline copper powder electrocatalysts. ACS Catal. 9, 4709–4718 (2019).

    CAS  Google Scholar 

  20. 20.

    Gabardo, C. M. et al. Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO. Energy Environ. Sci. 11, 2531–2539 (2018).

    CAS  Google Scholar 

  21. 21.

    Lum, Y. W. & Ager, J. W. Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction. Nat. Catal. 2, 86–93 (2019).

    CAS  Google Scholar 

  22. 22.

    Xiao, H., Cheng, T. & Goddard, W. A. Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139, 130–136 (2017).

    CAS  PubMed  Google Scholar 

  23. 23.

    Lum, Y. W., Cheng, T., Goddard, W. A. & Ager, J. W. Electrochemical CO reduction builds solvent water into oxygenate products. J. Am. Chem. Soc. 140, 9337–9340 (2018).

    CAS  PubMed  Google Scholar 

  24. 24.

    Cheng, T., Xiao, H. & Goddard, W. A. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl Acad. Sci. USA 114, 1795–1800 (2017).

    CAS  PubMed  Google Scholar 

  25. 25.

    Lausche, A. C. et al. On the effect of coverage-dependent adsorbate-adsorbate interactions for CO methanation on transition metal surfaces. J. Catal. 307, 275–282 (2013).

    CAS  Google Scholar 

  26. 26.

    Montoya, J. H., Shi, C., Chan, K. & Nørskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

    CAS  PubMed  Google Scholar 

  27. 27.

    Liu, X. Y. et al. Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 8, 15438 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Sandberg, R. B., Montoya, J. H., Chan, K. & Nørskov, J. K. CO–CO coupling on Cu facets: coverage, strain and field effects. Surf. Sci. 654, 56–62 (2016).

    CAS  Google Scholar 

  29. 29.

    Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar 

  30. 30.

    Schouten, K. J. P., Qin, Z., Pérez Gallent, E. & Koper, M. T. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 134, 9864–9867 (2012).

    CAS  PubMed  Google Scholar 

  31. 31.

    Wang, Z., Cao, X. M., Zhu, J. & Hu, P. Activity and coke formation of nickel and nickel carbide in dry reforming: a deactivation scheme from density functional theory. J. Catal. 311, 469–480 (2014).

    CAS  Google Scholar 

  32. 32.

    Wang, Z., Wang, H.-F. & Hu, P. Possibility of designing catalysts beyond the traditional volcano curve: a theoretical framework for multi-phase surfaces. Chem. Sci. 6, 5703–5711 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Liu, Q. et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 3, 936–943 (2018).

    CAS  Google Scholar 

  34. 34.

    Schreier, M., Yoon, Y., Jackson, M. N. & Surendranath, Y. Competition between H and CO for active sites governs copper‐mediated electrosynthesis of hydrocarbon fuels. Angew. Chem., Int. Ed. 57, 10221–10225 (2018).

    CAS  Google Scholar 

  35. 35.

    Wang, L. et al. Electrochemical carbon monoxide reduction on polycrystalline copper: effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS Catal. 8, 7445–7454 (2018).

    CAS  Google Scholar 

  36. 36.

    Handoko, A. D., Wei, F., Yeo, B. S. & Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 1, 922–934 (2018).

    CAS  Google Scholar 

  37. 37.

    Razzaq, R., Li, C. & Zhang, S. Coke oven gas: availability, properties, purification, and utilization in China. Fuel 113, 287–299 (2013).

    CAS  Google Scholar 

  38. 38.

    Wang, S., Wang, G., Jiang, F., Luo, M. & Li, H. Chemical looping combustion of coke oven gas by using Fe2O3/CuO with MgAl2O4 as oxygen carrier. Energy Environ. Sci. 3, 1353–1360 (2010).

    CAS  Google Scholar 

  39. 39.

    Hoang, T. T. H., Ma, S. C., Gold, J. I., Kenis, P. J. A. & Gewirth, A. A. Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis. ACS Catal. 7, 3313–3321 (2017).

    CAS  Google Scholar 

  40. 40.

    Hoang, T. T. H. et al. Nanoporous copper silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018).

    CAS  PubMed  Google Scholar 

  41. 41.

    Ma, S. C. et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 301, 219–228 (2016).

    CAS  Google Scholar 

  42. 42.

    Huang, Y., Handoko, A. D., Hirunsit, P. & Yeo, B. S. Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS Catal. 7, 1749–1756 (2017).

    CAS  Google Scholar 

  43. 43.

    Eren, B. et al. Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption. Science 351, 475–478 (2016).

    CAS  PubMed  Google Scholar 

  44. 44.

    Eren, B. et al. One-dimensional nanoclustering of the Cu(100) surface under CO gas in the mbar pressure range. Surf. Sci. 651, 210–214 (2016).

    CAS  Google Scholar 

  45. 45.

    Li, J. et al. Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 9, 4614 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  47. 47.

    Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  48. 48.

    Kresse, G. & Hafner, J. Ab-initio molecular-dynamics simulation of the liquid-metal amorphous–semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    CAS  Google Scholar 

  49. 49.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Google Scholar 

  50. 50.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  52. 52.

    Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    CAS  Google Scholar 

  53. 53.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    PubMed  Google Scholar 

  54. 54.

    Alavi, A., Hu, P., Deutsch, T., Silvestrelli, P. L. & Hutter, J. CO oxidation on Pt(111): an ab initio density functional theory study. Phys. Rev. Lett. 80, 3650 (1998).

    CAS  Google Scholar 

  55. 55.

    Michaelides, A. et al. Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces. J. Am. Chem. Soc. 125, 3704–3705 (2003).

    CAS  PubMed  Google Scholar 

  56. 56.

    Liu, Z. P. & Hu, P. General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C–H and C–O bond breaking/making on flat, stepped, and kinked metal surfaces. J. Am. Chem. Soc. 125, 1958–1967 (2003).

    CAS  PubMed  Google Scholar 

  57. 57.

    Shang, Y., Zhang, D. F. & Guo, L. CuCl-intermediated construction of short-range-ordered Cu2O mesoporous spheres with excellent adsorption performance. J. Mater. Chem. 22, 856–861 (2012).

    CAS  Google Scholar 

  58. 58.

    Jhong, H. R. M., Brushett, F. R. & Kenis, P. J. The effects of catalyst layer deposition methodology on electrode performance. Adv. Energy Mater. 3, 589–599 (2013).

    CAS  Google Scholar 

Download references


This work was supported financially by the Ontario Research Fund: Research Excellence programme, the Natural Sciences and Engineering Research Council of Canada, the CIFAR Bio-inspired Solar Energy programme and the University of Toronto Connaught grant. This research used synchrotron resources of the APS, an Office of Science user facility that is operated for the US Department of Energy Office of Science by Argonne National Laboratory and was supported by the US Department of Energy under contract no. DE-AC02-06CH11357, as well as the Canadian Light Source and its funding partners. This research also used infrastructure provided by the Canada Foundation for Innovation and the Ontario Research Fund. The authors thank T.P. Wu, Y.Z. Finfrock and L. Ma for technical support at the 9BM beamline of APS. D.S. acknowledges the Natural Sciences and Engineering Research Council E.W.R Steacie Memorial Fellowship. J.L. acknowledges the Banting Postdoctoral Fellowships programme. C.M.G. acknowledges the Natural Sciences and Engineering Research Council Postdoctoral Fellowships programme. All of the DFT computations were performed on the IBM BlueGene/Q supercomputer with support from the Southern Ontario Smart Computing Innovation Platform and Niagara supercomputer at the SciNet HPC Consortium. The Southern Ontario Smart Computing Innovation Platform is funded by the Federal Economic Development Agency of Southern Ontario, the Province of Ontario, IBM Canada Ltd., Ontario Centres of Excellence, Mitacs and 15 Ontario academic member institutions. SciNet is funded by: the Canada Foundation for Innovation; the Government of Ontario; Ontario Research Fund - Research Excellence; and the University of Toronto.

Author information




E.H.S and D.S. supervised the project. J.L. designed and carried out all the experiments. Z.Y.W. performed the DFT simulation. C.M. simulated the diffusion-reaction. J.Y.H. conducted the SEM characterization. F.W.L., L.W., and Y.R. assisted the operando XRD measurements and data analysis. Y.X., Y.H.W., C.M.G., C.T.D. and T.T.Z. contributed in data analysis and manuscript polishing. All authors discussed the results and assisted during manuscript preparation.

Corresponding authors

Correspondence to Edward H. Sargent or David Sinton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–34, Table 1, Notes 1–3 and references

Supplementary Data 1

Cartesian coordinates of the optimized computational models

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, Z., McCallum, C. et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat Catal 2, 1124–1131 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing