Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct catalytic transformation of white phosphorus into arylphosphines and phosphonium salts


Phosphorus compounds are ubiquitous in the chemical sciences, finding applications throughout industry and academia. Of particular interest to synthetic chemists are organophosphorus compounds, which contain P–C bonds. However, state-of-the-art processes for the synthesis of these important materials rely on an inefficient, stepwise methodology involving an initial oxidation of white phosphorus (P4) with hazardous chlorine gas and the subsequent displacement of chloride ions. Catalytic P4 organofunctionalization reactions have remained elusive, as they require multiple P–P bond-breaking and P–C bond-forming events to break down the P4 core, all of which must occur in a controlled manner. Herein, we describe an efficient transition-metal-catalysed process capable of forming P–C bonds from P4. Using blue-light photocatalysis, this method directly affords valuable triarylphosphines and tetraarylphosphonium salts in a single reaction step.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Functionalization of white phosphorus.
Fig. 2: Catalytic cycle.
Fig. 3: Time-resolved 31P{1H} NMR study.

Data availability

The data that support the figures within the paper and other findings of this study are available from the corresponding author on reasonable request.


  1. 1.

    Corbridge, D. E. C. Phosphorus 2000. Chemistry, Biochemistry and Technology (Elsevier, 2000).

  2. 2.

    Schipper, W. Phosphorus: too big to fail. Eur. J. Inorg. Chem. 1567–1571 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    Borger, J. E., Ehlers, A. W., Slootweg, J. C. & Lammertsma, K. Functionalization of P4 through direct P−C bond formation. Chem. Eur. J. 23, 11738–11746 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Wittig, G. & Schöllkopf, U. Über Triphenyl-phosphin-methylene als olefinbildende Reagenzien (I. Mitteil.). Chem. Ber. 87, 1318–1330 (1954).

    Article  Google Scholar 

  5. 5.

    Wittig, G. & Haag, W. Über Triphenyl-phosphin-methylene als olefinbildende Reagenzien (II. Mitteil.). Chem. Ber. 88, 1654–1666 (1955).

    CAS  Article  Google Scholar 

  6. 6.

    Guo, Y., Fu, H., Chen, H. & Li, X. Synthesis of new triarylphosphine ligand and their application in styrene hydroformylation. Catal. Commun. 9, 1842–1845 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    Kamer, P. C. J., van Leeuwen, P. W. N. M. & Reek, J. N. H. Wide bite angle diphosphines: xantphos ligands in transition metal complexes and catalysis. Acc. Chem. Res. 34, 895–904 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    Martin, R. & Buchwald, S. L. Palladium-catalyzed Suzuki−Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc. Chem. Res. 41, 1461–1473 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    Pignolet, L. M. (ed.) Homogeneous Catalysis with Metal Phosphine Complexes (Springer, 1983).

  10. 10.

    Surry, D. S. & Buchwald, S. L. Biaryl phosphane ligands in palladium-catalyzed amination. Angew. Chem. Int. Ed. 47, 6338–6361 (2008).

    CAS  Article  Google Scholar 

  11. 11.

    Fujihara, T., Yoshida, S., Terao, J. & Tsuji, Y. A triarylphosphine ligand bearing dodeca(ethylene glycol) chains: enhanced efficiency in the palladium-catalyzed Suzuki−Miyaura coupling reaction. Org. Lett. 11, 2121–2124 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    Börner, A. & Franke, R. (eds) in Hydroformylation: Fundamentals, Processes, and Applications in Organic Synthesis 73–266 (Wiley, 2016).

  13. 13.

    El-Shahawi, M. S., Hassan, S. S. M., Othman, A. M., Zyada, M. A. & El-Sonbati, M. A. Chemical speciation of chromium(III,VI) employing extractive spectrophotometry and tetraphenylarsonium chloride or tetraphenylphosphonium bromide as ion-pair reagent. Anal. Chim. Acta 534, 319–326 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    Starks, C. M. & Halper, M. Phase-Transfer Catalysis: Fundamentals, Applications, and Industrial Perspectives (Springer, 1994).

  15. 15.

    Kondo, S., Mori, T., Kunisada, H. & Yuki, Y. Synthesis of polymer-supported tetraphenylphosphonium bromides as effective phase-transfer catalysts at alkaline conditions. Makromol. Chem. Rapid Commun. 11, 309–313 (1990).

    Article  Google Scholar 

  16. 16.

    Manabe, K. Asymmetric phase-transfer alkylation catalyzed by a chiral quaternary phosphonium salt with a multiple hydrogen-bonding site. Tetrahedron Lett. 39, 5807–5810 (1998).

    CAS  Article  Google Scholar 

  17. 17.

    Ramanjaneyulu, B. T., Pareek, M., Reddy, V. & Vijaya Anand, R. Direct esterification of aromatic aldehydes with tetraphenylphosphonium bromide under oxidative N-heterocyclic carbene catalysis. Helv. Chim. Acta 97, 431–437 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Deng, Z., Lin, J.-H. & Xiao, J.-C. Nucleophilic arylation with tetraarylphosphonium salts. Nat. Commun. 7, 10337 (2016).

    Article  Google Scholar 

  19. 19.

    Reetz, M. T., Lohmer, G. & Schwickardi, R. A new catalyst system for the Heck reaction of unreactive aryl halides. Angew. Chem. Int. Ed. 37, 481–483 (1998).

    CAS  Article  Google Scholar 

  20. 20.

    Budnikova, Y. H., Gryaznova, T. V., Grinenko, V. V., Dudkina, Y. B. & Khrizanforov, M. N. Eco-efficient electrocatalytic C–P bond formation. Pure Appl. Chem. 89, 311–330 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Caporali, M., Gonsalvi, L., Rossin, A. & Peruzzini, M. P4 activation by late-transition metal complexes. Chem. Rev. 110, 4178–4235 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    Scheer, M., Balázs, G. & Seitz, A. P4 activation by main group elements and compounds. Chem. Rev. 110, 4236–4256 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    Khan, S., Sen, S. S. & Roesky, H. W. Activation of phosphorus by group 14 elements in low oxidation states. Chem. Commun. 48, 2169–2179 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    Barton, D. H. R. & Zhu, J. Elemental white phosphorus as a radical trap: a new and general route to phosphonic acids. J. Am. Chem. Soc. 115, 2071–2072 (1993).

    CAS  Article  Google Scholar 

  25. 25.

    Barton, D. H. R. & Vonder Embse, R. A. The invention of radical reactions. Part 39. The reaction of white phosphorus with carbon-centered radicals. An improved procedure for the synthesis of phosphonic acids and further mechanistic insights. Tetrahedron 54, 12475–12496 (1998).

    CAS  Article  Google Scholar 

  26. 26.

    Cossairt, M. B. & Cummins, C. C. Radical synthesis of trialkyl, triaryl, trisilyl and tristannyl phosphines from P4. New J. Chem. 34, 1533–1536 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    Ghosh, S. K., Cummins, C. C. & Gladysz, J. A. A direct route from white phosphorus and fluorous alkyl and aryl iodides to the corresponding trialkyl- and triarylphosphines. Org. Chem. Front. 5, 3421–3429 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    König B. Chemical Photocatalysis (Walter de Gruyter, 2013).

  29. 29.

    Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 117, 10075–10166 (2016).

    Article  Google Scholar 

  30. 30.

    Marzo, L., Pagire, S. K., Reiser, O. & König, B. Visible-light photocatalysis: does it make a difference in organic synthesis? Angew. Chem. Int. Ed. 57, 10034–10072 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Davies, A. G. in Chemistry of Tin (ed. Smith, P. J.) 265–289 (Springer, 1998).

  33. 33.

    Vyas, S. V., Lau, V. W. & Lotsch, B. V. Soft photocatalysis: organic polymers for solar fuel production. Chem. Mater. 28, 5191–5204 (2016).

    CAS  Article  Google Scholar 

Download references


We thank K. Zeitler (Universität Leipzig), O. Garcia Mancheño (Universität Münster) and J. C. Slootweg (University of Amsterdam) for valuable comments on the manuscript, P. Nitschke (Gschwind group, University of Regensburg) for assistance with NMR measurements and B. Luy (Karlsruhe Institute of Technology) for providing the broadband pulse xyBEBOP. Support by the DFG graduate program ‘Chemical Photocatalysis’ (GRK 1626) and the European Research Council (ERC CoG 772299) is also gratefully acknowledged.

Author information




U.L. developed the initial catalytic procedure. U.L. and P.B.A. performed further optimization. U.L., P.B.A. and D.J.S. investigated the substrate scope. U.L. and D.J.S. performed mechanistic investigations. V.S. and R.M.G. performed in situ NMR studies. C.R. performed (spectro)electrochemical experiments. R.W. oversaw and directed the project. U.L. and D.J.S. prepared the manuscript, with input from all authors.

Corresponding author

Correspondence to Robert Wolf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, discussion, Figures 1–62, Tables 1–6 and references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lennert, U., Arockiam, P.B., Streitferdt, V. et al. Direct catalytic transformation of white phosphorus into arylphosphines and phosphonium salts. Nat Catal 2, 1101–1106 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing