Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Iridium-catalysed enantioselective formal deoxygenation of racemic alcohols via asymmetric hydrogenation

Abstract

Asymmetric hydrogenation of alkenes is one of the most powerful tools for the preparation of optically active compounds. However, to achieve high enantioselectivity, the starting olefin in most cases needs to be isomerically pure in either the cis or the trans form. Generally, most olefination protocols provide olefins as isomeric mixtures that are difficult to separate, and in many cases also generate lots of waste. In contrast, the synthesis of racemic alcohols is straightforward and highly atom-efficient, with products that are easier to purify. Here, we describe a strategy that enables rapid access to chiral alkanes via enantioconvergent formal deoxygenation of racemic alcohols. Mechanistic studies indicate an Ir-mediated elimination of water and subsequent in situ hydrogenation. This approach allows rapid and efficient assembly of chiral intermediates and is exemplified in the total synthesis of antidepressant sertraline and σ2 receptor PB 28.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different preparative routes from ketones to chiral alkanes.
Fig. 2: Initial studies of Ir-catalysed deoxygenation.
Fig. 3: Substrate scope of linear tertiary alcohols.
Fig. 4: Substrate scope of cyclic tertiary alcohols and applications.
Fig. 5: Mechanistic studies.
Fig. 6: Computational studies of c1c6.

Similar content being viewed by others

Data availability

All data is available from the authors on reasonable request.

References

  1. Roseblade, S. J. & Pfaltz, A. Iridium-catalyzed asymmetric hydrogenation of olefins. Acc. Chem. Res. 40, 1402–1411 (2007).

    Article  CAS  Google Scholar 

  2. Chirik, P. J. Iron- and cobalt-catalyzed alkene hydrogenation: catalysis with both redox-active and strong field ligands. Acc. Chem. Res. 48, 1687–1695 (2015).

    Article  CAS  Google Scholar 

  3. Verendel, J. J., Pàmies, O., Diéguez, M. & Andersson, P. G. Asymmetric hydrogenation of olefins using chiral crabtree-type catalysts: scope and limitations. Chem. Rev. 114, 2130–2169 (2014).

    Article  CAS  Google Scholar 

  4. Zhu, S.-F. & Zhou, Q.-L. Iridium-catalyzed asymmetric hydrogenation of unsaturated carboxylic acids. Acc. Chem. Res. 50, 988–1001 (2017).

    Article  CAS  Google Scholar 

  5. Minnaard, A. J., Feringa, B. L., Lefort, L. & de Vries, J. G. Asymmetric hydrogenation using monodentate phosphoramidite ligands. Acc. Chem. Res. 40, 1267–1277 (2007).

    Article  CAS  Google Scholar 

  6. Zhang, W., Chi, Y. & Zhang, X. Developing chiral ligands for asymmetric hydrogenation. Acc. Chem. Res. 40, 1278–1290 (2007).

    Article  CAS  Google Scholar 

  7. Etayoa, P. & Vidal-Ferran, A. Rhodium-catalysed asymmetric hydrogenation as a valuable synthetic tool for the preparation of chiral drugs. Chem. Soc. Rev. 42, 728–754 (2013).

    Article  Google Scholar 

  8. Powell, M. T., Hou, D.-R., Perry, M. C., Cui, X. & Burgess, K. Chiral imidazolylidine ligands for asymmetric hydrogenation of aryl alkenes. J. Am. Chem. Soc. 123, 8878–8879 (2001).

    Article  CAS  Google Scholar 

  9. Wang, A., Wstenberg, B. & Pfaltz, A. Enantio- and diastereoselective hydrogenation of farnesol and O-protected derivatives: stereocontrol by changing the C=C bond configuration. Angew. Chem. Int. Ed. 47, 2298–2300 (2008).

    Article  CAS  Google Scholar 

  10. Peters, B. K. et al. An enantioselective approach to the preparation of chiral sulfones by Ir-catalyzed asymmetric hydrogenation. J. Am. Chem. Soc. 136, 16557–16562 (2014).

    Article  CAS  Google Scholar 

  11. Liu, G., Han, Z., Dong, X.-Q. & Zhang, X. Rh-catalyzed asymmetric hydrogenation of β-substituted-β-thio-α,β-unsaturated esters: expeditious access to chiral organic sulfides. Org. Lett. 20, 5636–5639 (2018).

    Article  CAS  Google Scholar 

  12. Yan, Q. et al. Highly efficient enantioselective synthesis of chiral sulfones by Rh-catalyzed asymmetric hydrogenation. J. Am. Chem. Soc. 141, 1749–1756 (2019).

    Article  CAS  Google Scholar 

  13. Takaya, H. et al. Enantioselective hydrogenation of allylic and homoallylic alcohols. J. Am. Chem. Soc. 109, 1596–1597 (1987).

    Article  CAS  Google Scholar 

  14. Maryanoff, B. E. & Reitz, A. B. The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. stereochemistry, mechanism, and selected synthetic aspects. Chem. Rev. 89, 863–927 (1989).

    Article  CAS  Google Scholar 

  15. Thiemann, T. Wittig- and Horner–Wadsworth–Emmons olefination in aqueous media with and without phase transfer catalysis. Mini-Rev. Org. Chem. 15, 412–432 (2018).

    Article  CAS  Google Scholar 

  16. Kita, Y. et al. Chloride-bridged dinuclear rhodium (III) complexes bearing chiral diphosphine ligands: catalyst precursors for asymmetric hydrogenation of simple olefins. Angew. Chem. Int. Ed. 55, 8299–8303 (2016).

    Article  CAS  Google Scholar 

  17. Barton, D. H. R. & McCombie, S. W. A new method for the deoxygenation of secondary alcohols. J. Chem. Soc. 1, 1574–1585 (1975).

    Google Scholar 

  18. Nozaki, K., Oshima, K. & Utimoto, K. Facile reduction of dithiocarbonates with n-Bu3SnH-Et3B. Easy access to hydrocarbons from secondary alcohols. Tetrahedron Lett. 29, 6125–6126 (1988).

    Article  CAS  Google Scholar 

  19. Lopez, R. M., Hays, D. S. & Fu, G. C. Bu3SnH catalyzed Barton−McCombie deoxygenation of alcohols. J. Am. Chem. Soc. 119, 6949–6950 (1997).

    Article  CAS  Google Scholar 

  20. Drosos, N. & Morandi, B. Boron-catalyzed regioselective deoxygenation of terminal 1,2-diols to 2-alkanols enabled by the strategic formation of a cyclic siloxane intermediate. Angew. Chem. Int. Ed. 54, 8814–8818 (2015).

    Article  CAS  Google Scholar 

  21. Foskey, T. J. A., Heinekey, D. M. & Goldberg, K. I. Partial deoxygenation of 1,2-propanediol catalyzed by iridium pincer complexes. ACS Catal. 2, 1285–1289 (2012).

    Article  Google Scholar 

  22. Lao, D. B., Owens, A. C. E., Heinekey, D. M. & Goldberg, K. I. Partial deoxygenation of glycerol catalyzed by iridium pincer complexes. ACS Catal. 3, 2391–2396 (2013).

    Article  CAS  Google Scholar 

  23. Schlaf, M., Ghosh, P., Fagan, P. J., Hauptman, E. & Bullock, R. M. Metal-catalyzed selective deoxygenation of diols to alcohols. Angew. Chem. Int. Ed. 40, 3887–3890 (2001).

    Article  CAS  Google Scholar 

  24. Schlaf, M., Ghosh, P., Fagan, P. J., Hauptman, E. & Bullock, R. M. Catalytic deoxygenation of 1,2-propanediol to give n-propanol. Adv. Synth. Catal. 351, 789–800 (2009).

    Article  CAS  Google Scholar 

  25. Dai, X.-J. & Li, C.-J. En route to a practical primary alcohol deoxygenation. J. Am. Chem. Soc. 138, 5433–5440 (2016).

    Article  CAS  Google Scholar 

  26. Huang, J.-L., Dai, X.-J. & Li, C.-J. Iridium-catalyzed direct dehydroxylation of alcohols. Eur. J. Org. Chem. 2013, 6496–6500 (2013).

    Article  CAS  Google Scholar 

  27. Bauer, J. O., Chakraborty, S. & Milstein, D. Manganese-catalyzed direct deoxygenation of primary alcohols. ACS Catal. 7, 4462–4466 (2017).

    Article  CAS  Google Scholar 

  28. Yang, S., Tang, W., Yang, Z. & Xu, J. Iridium-catalyzed highly efficient and site-selective deoxygenation of alcohols. ACS Catal. 8, 9320–9326 (2018).

    Article  Google Scholar 

  29. Isomura, M., Petrone, D. A. & Carreira, E. M. Coordination-induced stereocontrol over carbocations: asymmetric reductive deoxygenation of racemic tertiary alcohols. J. Am. Chem. Soc. 141, 4738–4748 (2019).

    Article  CAS  Google Scholar 

  30. Liu, J., Krajangsri, S., Yang, J., Li, J.-Q. & Andersson, P. G. Iridium-catalysed asymmetric hydrogenation of allylic alcohols via dynamic kinetic resolution. Nat. Catal. 1, 438–443 (2018).

    Article  CAS  Google Scholar 

  31. Krajangsri, S. et al. Tandem Peterson olefination and chemoselective asymmetric hydrogenation of β-hydroxy silanes. Chem. Sci. 10, 3649–3653 (2019).

    Article  CAS  Google Scholar 

  32. Kerdphon, S. et al. Diastereo- and enantioselective synthesis of structurally diverse succinate, butyrolactone, and trifluoromethyl derivatives by iridium-catalyzed hydrogenation of tetrasubstituted olefins. ACS Catal. 9, 6169–6176 (2019).

    Article  CAS  Google Scholar 

  33. Poremba, K. E., Kadunce, N. T., Suzuki, N., Cherney, A. H. & Reisman, S. E. Nickel-catalyzed asymmetric reductive cross-coupling to access 1,1-diarylalkanes. J. Am. Chem. Soc. 139, 5684–5687 (2017).

    Article  CAS  Google Scholar 

  34. Berardi, F. et al. 4-(Tetralin-1-yl)- and 4-(naphthalen-1-yl)alkyl derivatives of 1-cyclohexylpiperazine as σ receptor ligands with agonist σ 2 activity. J. Med. Chem. 47, 2308–2317 (2004).

    Article  CAS  Google Scholar 

  35. Church, T. L., Rasmussen, T. & Andersson, P. G. Enantioselectivity in the iridium catalyzed hydrogenation of unfunctionalized olefins. Organometallics 29, 6769–6781 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Swedish Research Council (VR), Stiftelsen Olle Engkvist Byggmästare, the Carl Tryggers Stiftelse, Knut and Alice Wallenberg foundation (KAW 2016.0072 and KAW 2018:0066) supported this work. J.J. thanks the Scientist Development Project Commemorating His Majesty the King’s 84th Birthday Anniversary, Chulabhorn Graduate Institute. We are also thankful to D.A. Tanner and M. Nolan for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

P.G.A. conceived and designed the experiments. J.Z., J.J., B.B.C.P., J.G. and S.P. performed experiments and prepared the Supplementary Information. M.S.G.A. performed the computational studies. P.G.A. and J.Z. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Pher G. Andersson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, Tables 1–6, discussion, methods and references.

Supplementary Data 1

Cartesian coordinates of optimized structures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Jongcharoenkamol, J., Peters, B.B.C. et al. Iridium-catalysed enantioselective formal deoxygenation of racemic alcohols via asymmetric hydrogenation. Nat Catal 2, 1093–1100 (2019). https://doi.org/10.1038/s41929-019-0375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0375-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing