Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photocatalytic activation of alkyl chlorides by assembly-promoted single electron transfer in microheterogeneous solutions


Photoredox catalysis has developed into a powerful tool for the synthesis of organic compounds with diverse structures. However, stable carbon–chloride bonds remain beyond the energetic limits of the outer-sphere photoreductive activation. Here, we demonstrate that the organization of the reacting species in microstructured, aqueous solutions allows generation of carbon-centred radicals from non-activated alkyl chlorides in the presence of double bonds via assembly-promoted single electron transfer. Photocatalytic systems consisting of a surfactant, organic substrates and additives have been designed, characterized and applied for radical dechlorination, addition and cyclization reactions. Cheap and commercially available blue light-emitting diodes are used as the irradiation source for the transformations. Mechanistic studies indicate the accumulation of the energy of two visible light photons in one catalytic cycle.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Light-driven strategies for activation of C–Cl bonds.
Fig. 2: Spectroscopic investigation on stability of [Ir(dtbby)·(ppy)2] species.
Fig. 3: The synthetic scope of the reductive dehalogenation.
Fig. 4: Developing a method for photoreductive C–C coupling.
Fig. 5: Inter- and intramolecular photoreductive C–C bond-forming reactions.
Fig. 6: Mechanistic investigations.
Fig. 7: Proposed mechanism for the dehalogenation of alkyl chlorides and addition to electron-deficient olefins.

Data availability

Data relating to the materials and methods, optimization studies, experimental procedures, mechanistic studies, DLS measurements and NMR spectra are available in the Supplementary Information. All other data are available from the authors upon reasonable request.


  1. 1.

    Clayden, J., Greeves, N. & Warren, S. Organic Chemistry (Oxford Univ. Press, 2012).

  2. 2.

    Martin, E. T., McGuire, C. M., Mubarak, M. S. & Peters, D. G. Electroreductive remediation of halogenated environmental pollutants. Chem. Rev. 116, 15198–15234 (2016).

    CAS  Google Scholar 

  3. 3.

    Alonso, F., Beletskaya, I. P. & Yus, M. Metal-mediated reductive hydrodehalogenation of organic halides. Chem. Rev. 102, 4009–4091 (2002).

    CAS  Google Scholar 

  4. 4.

    Jefford, C. W., Kirkpatrick, D. & Delay, F. Reductive dehalogenation of alkyl halides with lithium aluminum hydride. A reappraisal of the scope of the reaction. J. Am. Chem. Soc. 94, 8905–8907 (1972).

    CAS  Google Scholar 

  5. 5.

    Carraro, M., Pisano, L. & Azzena, U. Silica gel stabilized Na and Na/K alloys: highly effective, versatile and environmentally friendly reducing agents. Synthesis 49, 1931–1937 (2017).

    CAS  Google Scholar 

  6. 6.

    Dahlén, A., Hilmersson, G., Knettle, B. W. & Flowers, R. A. Rapid SmI2-mediated reductions of alkyl halides and electrochemical properties of SmI2/H2O/amine. J. Org. Chem. 68, 4870–4875 (2003).

    Google Scholar 

  7. 7.

    Krief, A. & Laval, A.-M. Coupling of organic halides with carbonyl compounds promoted by SmI2, the Kagan reagent. Chem. Rev. 99, 745–778 (1999).

    CAS  Google Scholar 

  8. 8.

    Szostak, M., Spain, M. & Procter, D. J. Determination of the effective redox potentials of SmI2, SmBr2, SmCl2, and their complexes with water by reduction of aromatic hydrocarbons. Reduction of anthracene and stilbene by samarium(II) iodide–water complex. J. Org. Chem. 79, 2522–2537 (2014).

    CAS  Google Scholar 

  9. 9.

    Hammerich, O. & Speiser, B. Organic Electrochemistry: Revised and Expanded 5th edn (CRC Press, 2015).

  10. 10.

    Kuivila, H. G. Reduction of organic compounds by organotin hydrides. Synthesis 1970, 499–509 (1970).

    Google Scholar 

  11. 11.

    Kawamoto, T. & Ryu, I. Radical reactions of borohydrides. Org. Biomol. Chem. 12, 9733–9742 (2014).

    CAS  Google Scholar 

  12. 12.

    Neumann, W. P. Tri-n-butyltin hydride as reagent in organic synthesis. Synthesis 1987, 665–683 (1987).

    Google Scholar 

  13. 13.

    Chatgilialoglu, C., Ferreri, C., Landais, Y. & Timokhin, V. I. Thirty years of (TMS)3SiH: a milestone in radical-based synthetic chemistry. Chem. Rev. 118, 6516–6572 (2018).

    CAS  Google Scholar 

  14. 14.

    Bose, S. K. et al. Highly efficient synthesis of alkylboronate esters via Cu(II)-catalyzed borylation of unactivated alkyl bromides and chlorides in air. ACS Catal. 6, 8–11 (2016).

    Google Scholar 

  15. 15.

    Atack, T. C. & Cook, S. P. Manganese-catalyzed borylation of unactivated alkyl chlorides. J. Am. Chem. Soc. 138, 6139–6142 (2016).

    CAS  Google Scholar 

  16. 16.

    Frisch, A. C. & Beller, M. Catalysts for cross-coupling reactions with non-activated alkyl halides. Angew. Chem. Int. Ed. Engl. 44, 674–688 (2005).

    CAS  Google Scholar 

  17. 17.

    Hu, X. Nickel-catalyzed cross coupling of non-activated alkyl halides: a mechanistic perspective. Chem. Sci. 2, 1867–1886 (2011).

    CAS  Google Scholar 

  18. 18.

    Dias, H. V. R., Browning, R. G., Polach, S. A., Diyabalanage, H. V. K. & Lovely, C. J. Activation of alkyl halides via a silver-catalyzed carbene insertion process. J. Am. Chem. Soc. 125, 9270–9271 (2003).

    CAS  Google Scholar 

  19. 19.

    Haibach, M. C., Stoltz, B. M. & Grubbs, R. H. Catalytic reduction of alkyl and aryl bromides using propan-2-ol. Angew. Chem. Int. Ed. Engl. 56, 15123–15126 (2017).

    CAS  Google Scholar 

  20. 20.

    Yan, M., Lo, J. C., Edwards, J. T. & Baran, P. S. Radicals: reactive intermediates with translational potential. J. Am. Chem. Soc. 138, 12692–12714 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  21. 21.

    Ramaiah, M. Radical reactions in organic synthesis. Tetrahedron 43, 3541–3676 (1987).

    CAS  Google Scholar 

  22. 22.

    Curran, D. P. The design and application of free radical chain reactions in organic synthesis. Part 1. Synthesis 1988, 417–439 (1988).

    Google Scholar 

  23. 23.

    Jasperse, C. P., Curran, D. P. & Fevig, T. L. Radical reactions in natural product synthesis. Chem. Rev. 91, 1237–1286 (1991).

    CAS  Google Scholar 

  24. 24.

    Giese, B. Preface. Tetrahedron 41, xiii (1985).

    Google Scholar 

  25. 25.

    Narayanam, J. M. R., Tucker, J. W. & Stephenson, C. R. J. Electron-transfer photoredox catalysis: development of a tin-free reductive dehalogenation reaction. J. Am. Chem. Soc. 131, 8756–8757 (2009).

    CAS  Google Scholar 

  26. 26.

    Neumann, M., Füldner, S., König, B. & Zeitler, K. Metal-free, cooperative asymmetric organophotoredox catalysis with visible light. Angew. Chem. Int. Ed. Engl. 50, 951–954 (2011).

    CAS  Google Scholar 

  27. 27.

    Maji, T., Karmakar, A. & Reiser, O. Visible-light photoredox catalysis: dehalogenation of vicinal dibromo-, α-halo-, and α,α-dibromocarbonyl compounds. J. Org. Chem. 76, 736–739 (2011).

    CAS  Google Scholar 

  28. 28.

    Shimakoshi, H., Tokunaga, M., Baba, T. & Hisaeda, Y. Photochemical dechlorination of DDT catalyzed by a hydrophobic vitamin B12 and a photosensitizer under irradiation with visible light. Chem. Commun. 2004, 1806–1807 (2004).

    Google Scholar 

  29. 29.

    Tahara, K. & Hisaeda, Y. Eco-friendly molecular transformations catalyzed by a vitamin B12 derivative with a visible-light-driven system. Green Chem. 13, 558–561 (2011).

    CAS  Google Scholar 

  30. 30.

    Tian, H. et al. Photocatalytic function of the B12 complex with the cyclometalated iridium(III) complex as a photosensitizer under visible light irradiation. Dalt. Trans. 47, 675–683 (2018).

    CAS  Google Scholar 

  31. 31.

    Matsubara, R. et al. UVA- and visible-light-mediated generation of carbon radicals from organochlorides using nonmetal photocatalyst. J. Org. Chem. 83, 9381–9390 (2018).

    CAS  Google Scholar 

  32. 32.

    Claros, M. et al. Reductive cyclization of unactivated alkyl chlorides with tethered alkenes under visible-light photoredox catalysis. Angew. Chem. Int. Ed. Engl. 58, 4869–4874 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  33. 33.

    Kerzig, C. & Goez, M. Combining energy and electron transfer in a supramolecular environment for the “green” generation and utilization of hydrated electrons through photoredox catalysis. Chem. Sci. 7, 3862–3868 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  34. 34.

    Kohlmann, T., Naumann, R., Kerzig, C. & Goez, M. 3-Aminoperylene and ascorbate in aqueous SDS, one green laser flash… and action! Sustainably detoxifying a recalcitrant chloro-organic. Photochem. Photobiol. Sci. 16, 1613–1622 (2017).

    CAS  Google Scholar 

  35. 35.

    Naumann, R., Lehmann, F. & Goez, M. Generating hydrated electrons for chemical syntheses by using a green light-emitting diode (LED). Angew. Chem. Int. Ed. Engl. 57, 1078–1081 (2018).

    CAS  Google Scholar 

  36. 36.

    Naumann, R. & Goez, M. First micelle-free photoredox catalytic access to hydrated electrons for syntheses and remediations with a visible LED or even sunlight. Chem. Eur. J. 24, 17557–17567 (2018).

    CAS  Google Scholar 

  37. 37.

    Kerzig, C., Guo, X. & Wenger, O. S. Unexpected hydrated electron source for preparative visible-light driven photoredox catalysis. J. Am. Chem. Soc. 141, 2122–2127 (2019).

    CAS  Google Scholar 

  38. 38.

    Kohlmann, T., Kerzig, C. & Goez, M. Laser‐induced Wurtz‐type syntheses with a metal‐free photoredox‐catalytic source of hydrated electrons. Chem. Eur. J. 25, 9991–9996 (2019).

    CAS  Google Scholar 

  39. 39.

    Kerzig, C. & Wenger, O. S. Sensitized triplet–triplet annihilation upconversion in water and its application to photochemical transformations. Chem. Sci. 9, 6670–6678 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  40. 40.

    Naumann, R. & Goez, M. A green-LED driven source of hydrated electrons characterized from microseconds to hours and applied to cross-couplings. Chem. Eur. J. 24, 9833–9840 (2018).

    CAS  Google Scholar 

  41. 41.

    Meyer, A. U., Slanina, T., Heckel, A. & König, B. Lanthanide ions coupled with photoinduced electron transfer generate strong reduction potentials from visible light. Chem. Eur. J. 23, 7900–7904 (2017).

    CAS  Google Scholar 

  42. 42.

    Häring, M., Pérez-Ruiz, R., Jacobi von Wangelin, A. & Díaz, D. D. Intragel photoreduction of aryl halides by green-to-blue upconversion under aerobic conditions. Chem. Commun. 51, 16848–16851 (2015).

    Google Scholar 

  43. 43.

    Bardagi, J. I., Ghosh, I., Schmalzbauer, M., Ghosh, T. & König, B. Anthraquinones as photoredox catalysts for the reductive activation of aryl halides. Eur. J. Org. Chem. 2018, 34–40 (2018).

    CAS  Google Scholar 

  44. 44.

    Ghosh, I. & König, B. Chromoselective photocatalysis: Controlled bond activation through light-color regulation of redox potentials. Angew. Chem. Int. Ed. Engl. 55, 7676–7679 (2016).

    CAS  Google Scholar 

  45. 45.

    Ghosh, I., Ghosh, T., Bardagi, J. I. & Konig, B. Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science 346, 725–728 (2014).

    CAS  Google Scholar 

  46. 46.

    Naumann, R., Lehmann, F. & Goez, M. Micellized tris(bipyridine)ruthenium catalysts affording preparative amounts of hydrated electrons with a green light-emitting diode. Chem. Eur. J. 24, 13259–13269 (2018).

    CAS  Google Scholar 

  47. 47.

    Bauduin, P. et al. The influence of structure and composition of a reverse SDS microemulsion on enzymatic activities and electrical conductivities. J. Colloid Interface Sci. 292, 244–254 (2005).

    CAS  Google Scholar 

  48. 48.

    Devery, J. J., Nguyen, J. D., Dai, C. & Stephenson, C. R. J. Light-mediated reductive debromination of unactivated alkyl and aryl bromides. ACS Catal. 6, 5962–5967 (2016).

    CAS  Google Scholar 

  49. 49.

    Shi, Y., Wu, Y., Hao, J. & Li, G. Microemulsion copolymerization of styrene and acrylonitrile with n-butanol as the cosurfactant. J. Polym. Sci. A 43, 203–216 (2005).

    CAS  Google Scholar 

  50. 50.

    Vlachy, N. et al. Hofmeister series and specific interactions of charged headgroups with aqueous ions. Adv. Colloid Interface Sci. 146, 42–47 (2009).

    CAS  Google Scholar 

  51. 51.

    Tyssee, D. A. & Baizer, M. M. Electrocarboxylation. I. Mono- and dicarboxylation of activated olefins. J. Org. Chem. 39, 2819–2823 (1974).

    CAS  Google Scholar 

  52. 52.

    Kerzig, C., Henkel, S. & Goez, M. A new approach to elucidating repair reactions of resveratrol. Phys. Chem. Chem. Phys. 17, 13915–13920 (2015).

    CAS  Google Scholar 

  53. 53.

    Lambert, F. L. & Ingall, G. B. Voltammetry of organic halogen compounds. IV. The reduction of organic chlorides at the vitreous (glassy) carbon electrode. Tetrahedron Lett. 15, 3231–3234 (1974).

    Google Scholar 

Download references


We gratefully acknowledge funding from the German Research Foundation (DFG, GRK 1626, Chemical Photocatalysis and KO 1537/18-1) and the Ministry of Science and Higher Education of Poland (M.G., Mobility Plus, 1640/MOB/V/2017/0). We thank S. Crespi for his help with preparing the graphics.

Author information




B.K. guided the research. B.K. and M.G. conceived and designed the project. M.G. performed most of the experiments and wrote the manuscript, with input from others. R.N. expanded the scope of radical cyclization reactions. S.W. carried out part of the optimization experiments. D.T. and W.K. envisaged and interpreted the effects of different surfactants, designed and analysed the DLS experiments. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Werner Kunz or Burkhard König.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–7, Figs. 1–10 and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giedyk, M., Narobe, R., Weiß, S. et al. Photocatalytic activation of alkyl chlorides by assembly-promoted single electron transfer in microheterogeneous solutions. Nat Catal 3, 40–47 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing