Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity

Abstract

Metal nanoparticles stabilized on a support material catalyse many major industrial reactions. Metal-support interactions in these nanomaterials can have a substantial influence on the catalysis, making metal-support interaction modulation one of the few tools able to enhance catalytic performance. This topic has received much attention in recent years, however, a systematic rationalization of the field is lacking due to the great diversity in catalysts, reactions and modification strategies. In this review, we cover and categorize the recent progress in metal-support interaction tuning strategies to enhance catalytic performance for various reactions. Furthermore, we quantify the productivity enhancements resulting from metal-support interaction control that have been achieved in C1 chemistry in recent years. Our analysis shows that up to fifteen-fold productivity enhancement has been achieved, and that metal-support interaction is most impactful for metal nanoparticles smaller than four nanometres. These findings demonstrate the importance of metal-support interaction to improve performance in catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of main metal-support interactions and their tuning strategies.
Fig. 2: MSI tuning strategies involving modification of the support composition and morphology.
Fig. 3: MSI tuning strategies based on doping and surface modification of the support.
Fig. 4: MSI tuning strategies involving alterations to the metal nanoparticle size or composition.
Fig. 5: MSI tuning strategies involving treatments of supported metal catalysts based on temperature, reducing agent or reduction-oxidation cycles.
Fig. 6: MSI tuning strategies involving overlayer deposition and adsorbate-mediated treatments of supported metal catalysts.
Fig. 7: Enhancement of catalytic performance in C1 chemistry achieved through control of MSI in recent years.

Similar content being viewed by others

References

  1. Anderson, J.A. & García, M.F. Supported Metals in Catalysis: Catalytic Science Series Vol. 5 (Imperial College Press, 2005).

  2. Roldan Cuenya, B. Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518, 3127–3150 (2010).

    Google Scholar 

  3. Zečević, J., Vanbutsele, G., de Jong, K. P. & Martens, J. A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons. Nature 528, 245–248 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. Arnal, P. M., Comotti, M. & Schüth, F. High-temperature-stable catalysts by hollow sphere encapsulation. Angew. Chem. Int. Ed. 45, 8224–8227 (2006).

    CAS  Google Scholar 

  5. Pacchioni, G. & Freund, H.-J. Controlling the charge state of supported nanoparticles in catalysis: lessons from model systems. Chem. Soc. Rev. 47, 8474–8502 (2018).

    CAS  PubMed  Google Scholar 

  6. Farmer, Ja & Campbell, C. T. Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science 329, 933–936 (2010).

    CAS  PubMed  Google Scholar 

  7. Ahmadi, M., Mistry, H. & Roldan Cuenya, B. Tailoring the catalytic properties of metal nanoparticles via support interactions. J. Phys. Chem. Lett. 7, 3519–3533 (2016).

    CAS  PubMed  Google Scholar 

  8. Ro, I., Resasco, J. & Christopher, P. Approaches for understanding and controlling interfacial effects in oxide-supported metal catalysts. ACS Catal. 8, 7368–7387 (2018).

    CAS  Google Scholar 

  9. Pan, C.-J. et al. Tuning/exploiting strong metal-support interaction (SMSI) in heterogeneous catalysis. J. Taiwan Inst. Chem. Eng. 74, 154–186 (2017).

    CAS  Google Scholar 

  10. Fujiwara, K., Okuyama, K. & Pratsinis, S. E. Metal–support interactions in catalysts for environmental remediation. Environ. Sci. Nano 4, 2076–2092 (2017).

    CAS  Google Scholar 

  11. Chen, M. S. & Goodman, D. W. The structure of catalytically active gold on titania. Science 306, 252–255 (2004).

    CAS  PubMed  Google Scholar 

  12. Luches, P. et al. Nature of Ag islands and nanoparticles on the CeO2(111) surface. J. Phys. Chem. C. 116, 1122–1132 (2011).

    Google Scholar 

  13. Pacchioni, G. Electronic interactions and charge transfers of metal atoms and clusters on oxide surfaces. Phys. Chem. Chem. Phys. 15, 1737–1757 (2013).

    CAS  PubMed  Google Scholar 

  14. Puigdollers, A. R., Schlexer, P., Tosoni, S. & Pacchioni, G. Increasing oxide reducibility: the role of metal/oxide interfaces in the formation of oxygen vacancies. ACS Catal. 7, 6493–6513 (2017).

    Google Scholar 

  15. Molina, L. M. & Hammer, B. Some recent theoretical advances in the understanding of the catalytic activity of Au. Appl. Catal. A Gen. 291, 21–31 (2005).

    CAS  Google Scholar 

  16. Zhang, B. & Qin, Y. Interface tailoring of heterogeneous catalysts by atomic layer deposition. ACS Catal. 8, 10064–10081 (2018).

    CAS  Google Scholar 

  17. Lin, X. et al. Characterizing low-coordinated atoms at the periphery of MgO-supported Au islands using scanning tunneling microscopy and electronic structure calculations. Phys. Rev. B. 81, 6–9 (2010).

    Google Scholar 

  18. Hammer, B. Special sites at noble and late transition metal catalysts. Top. Catal. 37, 3–16 (2006).

    CAS  Google Scholar 

  19. Farnesi Camellone, M., Negreiros Ribeiro, F., Szabová, L., Tateyama, Y. & Fabris, S. Catalytic proton dynamics at the water/solid interface of ceria-supported Pt clusters. J. Am. Chem. Soc. 138, 11560–11567 (2016).

    CAS  PubMed  Google Scholar 

  20. Toebes, M. L. et al. Support effects in hydrogenation of cinnamaldehyde over carbon nanofiber-supported platinum catalysts: kinetic modelling. Chem. Eng. Sci. 60, 5682–5695 (2005).

    CAS  Google Scholar 

  21. Davis, S. E., Ide, M. S. & Davis, R. J. Selective oxidation of alcohols and aldehydes over supported metal nanoparticles. Green. Chem. 15, 17–45 (2013).

    CAS  Google Scholar 

  22. Conner, W. C. & Falconer, J. L. Spillover in heterogeneous catalysis. Chem. Rev. 95, 759–788 (1995).

    CAS  Google Scholar 

  23. Prins, R. Hydrogen spillover: facts and fiction. Chem. Rev. 112, 2714–2738 (2012).

    CAS  PubMed  Google Scholar 

  24. Takakusagi, S., Fukui, K. I., Tero, R., Asakura, K. & Iwasawa, Y. First direct visualization of spillover species emitted from Pt nanoparticles. Langmuir 26, 16392–16396 (2010).

    CAS  PubMed  Google Scholar 

  25. Karim, W. et al. Catalyst support effects on hydrogen spillover. Nature 541, 68–71 (2017).

    CAS  PubMed  Google Scholar 

  26. Roldan Cuenya, B. Metal nanoparticle catalysts beginning to shape-up. Acc. Chem. Res. 46, 1682–1691 (2012).

    PubMed  Google Scholar 

  27. Frenkel, A. I. et al. Correlating particle size and shape of supported Ru/γ-Al2O3 catalysts with NH3 decomposition activity. J. Am. Chem. Soc. 131, 12230–12239 (2009).

    PubMed  Google Scholar 

  28. Henry, C. R. Morphology of supported nanoparticles. Prog. Surf. Sci. 80, 92–116 (2005).

    CAS  Google Scholar 

  29. Hansen, P. L. et al. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053–2055 (2002).

    CAS  PubMed  Google Scholar 

  30. Hemmingson, S. L. & Campbell, C. T. Trends in adhesion energies of metal nanoparticles on oxide surfaces: understanding support effects in catalysis and nanotechnology. ACS Nano 11, 1196–1203 (2017).

    CAS  PubMed  Google Scholar 

  31. Ahmadi, M., Behafarid, F. & Roldan Cuenya, B. Size-dependent adhesion energy of shape-selected Pd and Pt nanoparticles. Nanoscale 8, 11635–11641 (2016).

    CAS  PubMed  Google Scholar 

  32. Tanase, M. et al. Interfacial bonding stabilizes rhodium and rhodium oxide nanoparticles on layered Nb oxide and Ta oxide dupports. J. Am. Chem. Soc. 136, 5687–5696 (2014).

    PubMed  Google Scholar 

  33. Duan, M. et al. Reconstruction of supported metal nanoparticles in reaction conditions. Angew. Chem. Int. Ed. 57, 6464–6469 (2018).

    CAS  Google Scholar 

  34. Lin, Y. et al. Adhesion and atomic structures of gold on ceria nanostructures: the role of surface structure and oxidation state of ceria rupports. Nano Lett. 15, 5375–5381 (2015).

    CAS  PubMed  Google Scholar 

  35. Pingel, T. N., Jørgensen, M., Yankovich, A. B., Grönbeck, H. & Olsson, E. Influence of atomic site-specific strain on catalytic activity of supported nanoparticles. Nat. Commun. 9, 2722 (2018). Platinum nanoparticles anchored to γ-Al 2O 3 or CeO 2 show different levels of strain, which the authors quantify and they calculate the optimal Pt NP strain pattern for CO oxidation.

    Google Scholar 

  36. Shibata, N. et al. Interface structures of gold nanoparticles on TiO2 (110). Phys. Rev. Lett. 102, 136105 (2009).

    CAS  PubMed  Google Scholar 

  37. Bartholomew, C. H. Mechanisms of catalyst deactivation. Appl. Catal. A Gen. 212, 17–60 (2001).

    CAS  Google Scholar 

  38. van Deelen, T. W., Nijhuis, J. J., Krans, N. A., Zečević, J. & de Jong, K. P. Preparation of cobalt nanocrystals supported on metal oxides to study particle growth in Fischer−Tropsch catalysts. ACS Catal. 8, 10581–10589 (2018).

    PubMed  PubMed Central  Google Scholar 

  39. Penner, S. & Armbrüster, M. Formation of intermetallic compounds by reactive metal– support interaction: a frequently encountered phenomenon in catalysis. ChemCatChem 7, 374–392 (2015).

    CAS  Google Scholar 

  40. Furukawa, S. & Komatsu, T. Intermetallic compounds: promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis. ACS Catal. 7, 735–765 (2017).

    CAS  Google Scholar 

  41. Zafeiratos, S., Piccinin, S. & Teschner, D. Alloys in catalysis: phase separation and surface segregation phenomena in response to the reactive environment. Catal. Sci. Technol. 2, 1787–1801 (2012).

    CAS  Google Scholar 

  42. Singh, A. K. & Xu, Q. Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 5, 652–676 (2013).

    CAS  Google Scholar 

  43. Ferrando, R., Jellinek, J. & Johnston, R. L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008).

    CAS  PubMed  Google Scholar 

  44. Tauster, S. J., Fung, S. C. & Garten, R. L. Strong metal-support interactions: group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 100, 170–175 (1978).

    CAS  Google Scholar 

  45. Tauster, S. J., Fung, S. C., Baker, R. T. & Horsley, J. A. Strong interactions in supported-metal catalysts. Science 211, 1121–1125 (1981).

    CAS  PubMed  Google Scholar 

  46. Hernández-Cristóbal, O., Arenas-Alatorre, J., Díaz, G., Bahena, D. & J. Yacamán, M. High resolution HAADF characterization of Ir/TiO2 catalyst reduced at 500 °C: intensity profile analysis. J. Phys. Chem. C. 119, 11672–11678 (2015).

    Google Scholar 

  47. Willinger, M. G. et al. A case of strong metal–support interactions: combining advanced microscopy and model systems to elucidate the atomic structure of interfaces. Angew. Chem. Int. Ed. 53, 5998–6001 (2014).

    CAS  Google Scholar 

  48. Zhang, S. et al. Dynamical observation and detailed description of catalysts under strong metal−support interaction. Nano Lett. 16, 4528–4534 (2016).

    CAS  PubMed  Google Scholar 

  49. Chen, M. S. & Goodman, D. W. Interaction of Au with titania: the role of reduced Ti. Top. Catal. 44, 41–47 (2007).

    Google Scholar 

  50. Saavedra, J., Pursell, C. J. & Chandler, B. D. CO oxidation kinetics over Au/TiO2 and Au/Al2O3 catalysts: evidence for a common water-assisted mechanism. J. Am. Chem. Soc. 140, 3712–3723 (2018).

    CAS  PubMed  Google Scholar 

  51. Wang, Y., Widmann, D. & Behm, R. J. Influence of TiO2 bulk defects on CO adsorption and CO oxidation on Au/TiO2: electronic metal−support interactions (EMSIs) in supported Au catalysts. ACS Catal. 7, 2339–2345 (2017).

    CAS  Google Scholar 

  52. Wang, Y. et al. The role of electronic metal-support interactions and its temperature dependence: CO adsorption and CO oxidation on Au/TiO2 catalysts in the presence of TiO2 bulk defects. J. Catal. 354, 46–60 (2017).

    CAS  Google Scholar 

  53. Kumar, G. et al. Evaluating differences in the active-site electronics of supported Au nanoparticle catalysts using Hammett and DFT studies. Nat. Chem. 10, 268–274 (2018). The catalytic performance of gold nanoparticles on various supports is compared using a model reaction to obtain information on the role of charge transfer between metal and support.

    CAS  PubMed  Google Scholar 

  54. Song, H. et al. Visible-light-mediated methane activation for steam methane reforming under mild conditions: a case study of Rh/TiO2 catalysts. ACS Catal. 8, 7556–7565 (2018).

    CAS  Google Scholar 

  55. Sakamoto, H. et al. Hot-electron-induced highly efficient O2 activation by Pt nanoparticles supported on Ta2O5 driven by visible light. J. Am. Chem. Soc. 137, 9324–9332 (2015).

    CAS  PubMed  Google Scholar 

  56. Jackson, C. et al. Electronic metal-support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum. Nat. Commun. 8, 15802 (2017). Platinum nanoparticles supported on boron carbide outperform commercial Pt/C in terms of activity and stability, which is ascribed to an electronic metal-support interaction.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Irvine, J. T. S. et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat. Energy 1, 1–13 (2016).

    Google Scholar 

  58. Neagu, D., Tsekouras, G., Miller, D. N., Ménard, H. & Irvine, J. T. S. In situ growth of nanoparticles through control of non-stoichiometry. Nat. Chem. 5, 916–923 (2013).

    CAS  PubMed  Google Scholar 

  59. Neagu, D. et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nat. Commun. 6, 8120 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. Gao, Y., Wang, J., Lyu, Y.-Q., Lam, K. & Ciucci, F. In situ growth of Pt3Ni nanoparticles on an A-site deficient perovskite with enhanced activity for the oxygen reduction reaction. J. Mater. Chem. A 5, 6399–6404 (2017).

    CAS  Google Scholar 

  61. Huang, X., Zhao, G., Wang, G. & Irvine, J. T. S. Synthesis and applications of nanoporous perovskite metal oxides. Chem. Sci. 9, 3623–3637 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Murata, K. et al. The metal-support interaction concerning the particle size Effect of Pd/Al2O3 on Methane Combustion. Angew. Chem. Int. Ed. 56, 15993–15997 (2017).

    CAS  Google Scholar 

  63. Bertella, F., Concepción, P. & Martínez, A. TiO2 polymorph dependent SMSI effect in Co-Ru/TiO2 catalysts and its relevance to Fischer–Tropsch synthesis. Catal. Today 289, 181–191 (2017).

    CAS  Google Scholar 

  64. Yu, L. et al. Influence of the crystal structure of titanium oxide on the catalytic activity of Rh/TiO2 in steam reforming of propane at low temperature. Chem. Eur. J. 24, 8742–8746 (2018).

    CAS  PubMed  Google Scholar 

  65. Bertella, F., Concepción, P. & Martínez, A. The impact of support surface area on the SMSI decoration effect and catalytic performance for Fischer-Tropsch synthesis of Co-Ru/TiO2-anatase catalysts. Catal. Today 296, 170–180 (2017).

    CAS  Google Scholar 

  66. Abdel-Mageed, A. M. et al. Selective CO methanation on Ru/TiO2 Catalysts: role and influence of metal-support interactions. ACS Catal. 5, 6753–6763 (2015).

    CAS  Google Scholar 

  67. Yoon, S. et al. Specific metal-support interactions between nanoparticle layers for catalysts with enhanced methanol oxidation activity. ACS Catal. 8, 5391–5398 (2018).

    CAS  Google Scholar 

  68. Lin, B. et al. Effect of ceria morphology on the catalytic activity of Co/CeO2 catalyst for ammonia synthesis. Catal. Commun. 101, 15–19 (2017).

    CAS  Google Scholar 

  69. Ma, Z., Zhao, S., Pei, X., Xiong, X. & Hu, B. New insights into the support morphology-dependent ammonia synthesis activity of Ru/CeO2. catalysts. Catal. Sci. Technol. 7, 191–199 (2017).

    CAS  Google Scholar 

  70. Ha, H., Yoon, S., An, K. & Kim, H. Y. Catalytic CO oxidation over Au nanoparticles supported on CeO2 nanocrystals: effect of the Au–CeO2 interface. ACS Catal. 8, 11491–11501 (2018).

    CAS  Google Scholar 

  71. Liu, M.-H., Chen, Y.-W., Lin, T.-S. & Mou, C.-Y. Defective mesocrystal ZnO-supported gold catalysts: facilitating CO oxidation via vacancy defects in ZnO. ACS Catal. 8, 6862–6869 (2018).

    CAS  Google Scholar 

  72. Zhu, W. et al. Taming interfacial electronic properties of platinum nanoparticles on vacancy-abundant boron nitride nanosheets for enhanced catalysis. Nat. Commun. 8, 15291 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Yan, X. et al. Nickel@Siloxene catalytic nanosheets for high-performance CO2 methanation. Nat. Commun. 10, 2608 (2019).

    PubMed  PubMed Central  Google Scholar 

  74. Zhang, F. et al. Tailoring the oxidation activity of Pt nanoclusters via encapsulation. ACS Catal. 5, 1381–1385 (2015).

    CAS  Google Scholar 

  75. Li, Z. et al. Reactive metal–support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nat. Catal. 1, 349–355 (2018). A Pt-Nb surface alloy with enhanced water–gas shift kinetics is generated under reaction conditions from a two-dimensional metal carbide using the concept of reactive metal-support interactions.

    CAS  Google Scholar 

  76. Li, Z. et al. Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles. Nat. Commun. 9, 5258 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. Shi, L., Li, Z., Dao, T. D., Nagao, T. & Yang, Y. A synergistic interaction between isolated Au nanoparticles and oxygen vacancies in an amorphous black TiO2 nanoporous film: toward enhanced photoelectrochemical water splitting. J. Mater. Chem. A 6, 12978–12984 (2018).

    CAS  Google Scholar 

  78. He, L., Weniger, F., Neumann, H. & Beller, M. Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: catalysis beyond electrochemistry. Angew. Chem. Int. Ed. 55, 12582–12594 (2016).

    CAS  Google Scholar 

  79. Shi, R. et al. Nitrogen-doped graphene supported copper catalysts for methanol oxidative carbonylation: enhancement of catalytic activity and stability by nitrogen species. Carbon 130, 185–195 (2018).

    CAS  Google Scholar 

  80. Ning, X. et al. Electron transfer dependent catalysis of Pt on N-doped carbon nanotubes: effects of synthesis method on metal-support interaction. J. Catal. 348, 100–109 (2017).

    CAS  Google Scholar 

  81. Walczak, R. et al. Template- and metal-free synthesis of nitrogen-rich nanoporous “noble” varbon materials by direct pyrolysis of a preorganized hexaazatriphenylene precursor. Angew. Chem. Int. Ed. 57, 10765–10770 (2018).

    CAS  Google Scholar 

  82. Antonietti, M. & Oschatz, M. The concept of “noble, heteroatom-doped carbons,” their directed synthesis by electronic band control of carbonization, and applications in catalysis and energy materials. Adv. Mater. 30, 1706836 (2018).

    Google Scholar 

  83. Qin, Q., Heil, T., Antonietti, M. & Oschatz, M. Single-site gold catalysts on hierarchical N-doped porous noble carbon for enhanced electrochemical reduction of nitrogen. Small Methods 2, 1800202 (2018). Gold nanoparticles are positively charged on a C 2N noble carbon support, making them active for ammonia synthesis.

    Google Scholar 

  84. Theofanidis, S. A. et al. Fe-containing magnesium aluminate support for stability and carbon control during methane reforming. ACS Catal. 8, 5983–5995 (2018).

    CAS  Google Scholar 

  85. Margossian, T. et al. Molecularly tailored nickel precursor and support yield a stable methane dry reforming catalyst with superior metal utilization. J. Am. Chem. Soc. 139, 6919–6927 (2017).

    CAS  PubMed  Google Scholar 

  86. Horlyck, J., Lewis, S., Amal, R. & Scott, J. The impact of La doping on dry reforming Ni-based catalysts loaded on FSP-alumina. Top. Catal. 61, 1842–1855 (2018).

    CAS  Google Scholar 

  87. Hsieh, B.-J. et al. Platinum loaded on dual-doped TiO2 as an active and durable oxygen reduction reaction catalyst. NPG Asia Mater. 9, e403 (2017).

    CAS  Google Scholar 

  88. Tran, S. B. T., Choi, H. S., Oh, S. Y., Moon, S. Y. & Park, J. Y. Iron-doped ZnO as a support for Pt-based catalysts to improve activity and stability: enhancement of metal-support interaction by the doping effect. RSC Adv. 8, 21528–21533 (2018).

    Google Scholar 

  89. Wang, F. et al. Enhanced catalytic performance of Ir catalysts supported on ceria-based solid solutions for methane dry reforming reaction. Catal. Today 281, 295–303 (2017).

    CAS  Google Scholar 

  90. Tabakova, T. et al. Structure-activity relationship in water-gas shift reaction over gold catalysts supported on Y-doped ceria. J. Rare Earths 37, 383–392 (2019).

    CAS  Google Scholar 

  91. Chen, P. et al. Experimental and theoretical understanding of nitrogen-doping-induced strong metal-support interactions in Pd/TiO2 catalysts for nitrobenzene hydrogenation. ACS Catal. 7, 1197–1206 (2017).

    CAS  Google Scholar 

  92. Schumann, J. et al. Promoting strong metal support interaction: doping ZnO for enhanced activity of Cu/ZnO:M (M = Al, Ga, Mg) catalysts. ACS Catal. 5, 3260–3270 (2015).

    CAS  Google Scholar 

  93. Chernyak, S. A. et al. Effect of Co crystallinity on Co/CNT catalytic activity in CO/CO2 hydrogenation and CO disproportionation. Appl. Surf. Sci. 372, 100–107 (2016).

    CAS  Google Scholar 

  94. Chernyak, S. A. et al. Co catalysts supported on oxidized CNTs: evolution of structure during preparation, reduction and catalytic test in Fischer-Tropsch synthesis. Appl. Catal. A Gen. 523, 221–229 (2016).

    CAS  Google Scholar 

  95. Eschemann, T. O. et al. Effect of support surface treatment on the synthesis, structure, and performance of Co/CNT Fischer–Tropsch catalysts. J. Catal. 328, 130–138 (2015).

    CAS  Google Scholar 

  96. Honma, T. & Wayman, C. M. Epitaxial growth of evaporated cobalt films. J. Appl. Phys. 36, 2791–2798 (1965).

    Google Scholar 

  97. Rao, R. G. et al. Interfacial charge distributions in carbon-supported palladium catalysts. Nat. Commun. 8, 340 (2017). The selectivity of Pd/C catalysts in cinnamaldehyde hydrogenation is regulated by functional groups on the support surface, because of electronic charge redistribution at the Pd-C interface.

    PubMed  PubMed Central  Google Scholar 

  98. Shi, W. et al. Enhanced chemoselective hydrogenation through tuning the interaction between Pt nanoparticles and carbon supports: insights from identical location transmission electron microscopy and X‑ray photoelectron spectroscopy. ACS Catal. 6, 7844–7854 (2016).

    CAS  Google Scholar 

  99. Donoeva, B., Masoud, N. & De Jongh, P. E. Carbon support surface effects in the gold-catalyzed oxidation of 5-hydroxymethylfurfural. ACS Catal. 7, 4581–4591 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Celebi, M., Yurderi, M., Bulut, A., Kaya, M. & Zahmakiran, M. Palladium nanoparticles supported on amine-functionalized SiO2 for the catalytic hexavalent chromium reduction. Appl. Catal. B Environ. 180, 53–64 (2016).

    CAS  Google Scholar 

  101. Rodríguez-Gómez, A., Platero, F., Caballero, A. & Colón, G. Improving the direct synthesis of hydrogen peroxide from hydrogen and oxygen over Au-Pd/SBA-15 catalysts by selective functionalization. Mol. Catal. 445, 142–151 (2018).

    Google Scholar 

  102. Van Den Berg, R. et al. Support functionalization to retard ostwald ripening in copper methanol synthesis catalysts. ACS Catal. 5, 4439–4448 (2015).

    Google Scholar 

  103. Pan, Y.-X. et al. Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts. J. Am. Chem. Soc. 139, 4123–4129 (2017).

    CAS  PubMed  Google Scholar 

  104. Prieto, G. et al. Cobalt-catalyzed Fischer-Tropsch synthesis: chemical nature of the oxide support as a performance descriptor. ACS Catal. 5, 3323–3335 (2015).

    CAS  Google Scholar 

  105. Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lykhach, Y. et al. Counting electrons on supported nanoparticles. Nat. Mater. 15, 284–288 (2016). Charge donation per platinum atom in Pt/CeO 2 catalysts is quantified, showing that charge transfer is only effective at short range, with an optimum for nanoparticles consisting of 30–70 Pt atoms.

    CAS  PubMed  Google Scholar 

  107. Guo, Y. et al. Low-temperature CO2 methanation over CeO2‑supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H‑spillover effect. ACS Catal. 8, 6203–6215 (2018).

    CAS  Google Scholar 

  108. Yan, Y. et al. Ru/Al2O3 catalyzed CO2 hydrogenation: oxygen-exchange on metal-support interfaces. J. Catal. 367, 194–205 (2018).

    CAS  Google Scholar 

  109. Demiroglu, I. et al. Modelling free and oxide-supported nanoalloy catalysts: comparison of bulk-immiscible Pd–Ir and Au–Rh systems and influence of a TiO2 support. Faraday Discuss. 208, 53–66 (2018).

    CAS  PubMed  Google Scholar 

  110. Piccolo, L. et al. Understanding and controlling the structure and segregation behaviour of AuRh nanocatalysts. Sci. Rep. 6, 1–8 (2016).

    Google Scholar 

  111. Konuspayeva, Z. et al. Au-Rh and Au-Pd nanocatalysts supported on rutile titania nanorods: structure and chemical stability. Phys. Chem. Chem. Phys. 17, 28112–28120 (2015).

    CAS  PubMed  Google Scholar 

  112. Han, C. W. et al. Highly stable bimetallic AuIr/TiO2 catalyst: physical origins of the intrinsic high stability against sintering. Nano Lett. 15, 8141–8147 (2015).

    CAS  PubMed  Google Scholar 

  113. Destro, P. et al. The crucial role of the support in the transformations of bimetallic nanoparticles and catalytic performance. ACS Catal. 8, 1031–1037 (2018).

    CAS  Google Scholar 

  114. Seemala, B., Cai, C. M., Wyman, C. E. & Christopher, P. Support induced control of surface composition in Cu-Ni/TiO2 catalysts enables high yield co-conversion of HMF and furfural to methylated furans. ACS Catal. 7, 4070–4082 (2017).

    CAS  Google Scholar 

  115. Liu, D. et al. Identifying dynamic structural changes of active sites in Pt–Ni bimetallic catalysts using multimodal approaches. ACS Catal. 8, 4120–4131 (2018).

    CAS  Google Scholar 

  116. Divins, N. J., Angurell, I., Escudero, C., Pérez-Dieste, V. & Llorca, J. Influence of the support on surface rearrangements of bimetallic nanoparticles in real catalysts. Science 346, 620–623 (2014). Rh and Pd are uniformly distributed in unsupported bimetallic nanoparticles at conditions close to ethanol steam reforming, whereas in CeO 2-supported bimetallic NP under the same conditions, Pd is enriched at the NP surface in and Rh coordinates to the support.

    CAS  PubMed  Google Scholar 

  117. Gubó, R. et al. Variation of SMSI with the Au:Pd ratio of bimetallic nanoparticles on TiO2(110). Top. Catal. 61, 308–317 (2018).

    PubMed  Google Scholar 

  118. Zhan, W. et al. Surfactant-assisted stabilization of Au colloids on solids for heterogeneous catalysis. Angew. Chem. Int. Ed. 56, 4494–4498 (2017).

    CAS  Google Scholar 

  119. Gao, X., Liu, H., Hidajat, K. & Kawi, S. Anti-coking Ni/SiO2 catalyst for dry reforming of methane: tole of oleylamine/oleic acid organic pair. ChemCatChem 7, 4188–4196 (2015).

    CAS  Google Scholar 

  120. Tang, H. et al. Classical strong metal–support interactions between gold nanoparticles and titanium dioxide. Sci. Adv. 3, e1700231 (2017). Coverage of gold nanoparticles by TiO 2 suboxides occurs during H 2 treatment at elevated temperature and limits accessibility of the Au surface, thereby quenching CO oxidation reactivity.

    PubMed  PubMed Central  Google Scholar 

  121. Tang, H. et al. Strong metal-support Interactions between gold nanoparticles and nonoxides. J. Am. Chem. Soc. 138, 56–59 (2016).

    CAS  PubMed  Google Scholar 

  122. Tang, H. et al. Oxidative strong metal-support interactions (OMSI) of supported platinum-group metal catalysts. Chem. Sci. 9, 6679–6684 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang, L. et al. Strong metal-support interactions achieved by hydroxide-to-oxide support transformation for preparation of sinter-resistant gold nanoparticle catalysts. ACS Catal. 7, 7461–7465 (2017).

    CAS  Google Scholar 

  124. Hernández Mejía, C., Vogt, C., Weckhuysen, B.M. & de Jong, K.P. Stable niobia-supported nickel catalysts for the hydrogenation of carbon monoxide to hydrocarbons. Catal. Today https://doi.org/10.1016/j.cattod.2018.11.036 (2018).

  125. Xu, M. et al. TiO2–x-modified Ni nanocatalyst with tunable metal–support interaction for water–gas shift reaction. ACS Catal. 7, 7600–7609 (2017).

    CAS  Google Scholar 

  126. Li, Y. et al. High temperature reduction dramatically promotes Pd/TiO2 catalyst for ambient formaldehyde oxidation. Appl. Catal. B Environ. 217, 560–569 (2017).

    CAS  Google Scholar 

  127. Ryabchuk, P. et al. Intermetallic nickel silicide nanocatalyst—a non-noble metal–based general hydrogenation catalyst. Sci. Adv. 4, eaat0761 (2018).

    PubMed  PubMed Central  Google Scholar 

  128. Serna, P. & Corma, A. Transforming nano metal nonselective particulates into chemoselective catalysts for hydrogenation of substituted nitrobenzenes. ACS Catal. 5, 7114–7121 (2015).

    CAS  Google Scholar 

  129. Rui, Z., Chen, L., Chen, H. & Ji, H. Strong metal-support interaction in Pt/TiO2 induced by mild HCHO and NaBH4 solution reduction and its effect on catalytic toluene combustion. Ind. Eng. Chem. Res. 53, 15879–15888 (2014).

    CAS  Google Scholar 

  130. Gänzler, A. M. et al. Tuning the structure of platinum particles on ceria in situ for enhancing the catalytic performance of exhaust gas catalysts. Angew. Chem. Int. Ed. 56, 13078–13082 (2017).

    Google Scholar 

  131. Gänzler, A. M. et al. Tuning the Pt/CeO2 Interface by in situ variation of the Pt particle size. ACS Catal. 8, 4800–4811 (2018). Various reducing agents lead to different degrees of platinum nanoparticle growth and ceria reduction in Pt/CeO 2-Al 2O 3, which strongly influences the catalytic CO oxidation activity.

    Google Scholar 

  132. Freakley, S. J. et al. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351, 965–968 (2016).

    CAS  Google Scholar 

  133. Hernández Mejía, C., van Deelen, T. W. & de Jong, K. P. Activity enhancement of cobalt catalysts by tuning metal-support interactions. Nat. Commun. 9, 4459 (2018). Reduction-oxidation-reduction pretreatments are applied to mitigate cobalt nanoparticle coverage by TiO 2 or Nb 2O 5 suboxides and lead to twice the exposed cobalt surface and activity in the Fischer-Tropsch synthesis.

    PubMed  PubMed Central  Google Scholar 

  134. Zhan, W. et al. A sacrificial coating strategy toward enhancement of metal-support interaction for ultrastable Au nanocatalysts. J. Am. Chem. Soc. 138, 16130–16139 (2016).

    CAS  PubMed  Google Scholar 

  135. Phaahlamohlaka, T. N. et al. A sinter resistant Co Fischer-Tropsch catalyst promoted with Ru and supported on titania encapsulated by mesoporous silica. Appl. Catal. A Gen. 552, 129–137 (2018).

    CAS  Google Scholar 

  136. Li, H. et al. Evidence of the encapsulation model for strong metal−support interaction under oxidized conditions: a case study on TiOx/Pt(111) for CO oxidation by in situ wide spectral range infrared reflection adsorption spectroscopy. ACS Catal. 8, 10156–10163 (2018).

    CAS  Google Scholar 

  137. Weng, Z. & Zaera, F. Sub-monolayer control of mixed-oxide support composition in catalysts via atomic layer deposition: selective hydrogenation of cinnamaldehyde promoted by (SiO2-ALD)-Pt/Al2O3. ACS Catal. 8, 8513–8524 (2018).

    CAS  Google Scholar 

  138. Ro, I. et al. Role of the Cu-ZrO2 interfacial sites for conversion of ethanol to ethyl acetate and synthesis of methanol from CO2 and H2. ACS Catal. 6, 7040–7050 (2016).

    CAS  Google Scholar 

  139. Moon, S. Y., Naik, B., Jung, C.-H., Qadir, K. & Park, J. Y. Tailoring metal-oxide interfaces of oxide-encapsulated Pt/silica hybrid nanocatalysts with enhanced thermal stability. Catal. Today 265, 245–253 (2016).

    CAS  Google Scholar 

  140. Yang, N. & Bent, S. F. Investigation of inherent differences between oxide supports in heterogeneous catalysis in the absence of structural variations. J. Catal. 351, 49–58 (2017).

    CAS  Google Scholar 

  141. Kennedy, R. M. et al. Replication of SMSI via ALD: TiO2 overcoats increase Pt-catalyzed acrolein hydrogenation selectivity. Catal. Lett. 148, 2223–2232 (2018).

    CAS  Google Scholar 

  142. Zhang, J. et al. Wet-chemistry strong metal-support interactions in Titania supported Au catalysts. J. Am. Chem. Soc. 141, 2975–2983 (2019).

    CAS  PubMed  Google Scholar 

  143. Wu, L., Li, B. & Zhao, C. Direct synthesis of hydrogen and dimethoxylmethane from methanol on copper/silica catalysts with optimal Cu+/Cu0 sites. ChemCatChem 10, 1140–1147 (2018).

    CAS  Google Scholar 

  144. Xu, C. et al. Interfacing with silica boosts the catalysis of copper. Nat. Commun. 9, 3367 (2018). A mesoporous SiO2 layer over a Cu/SiO2 catalyst increases the concentration of Cu-O-SiOx surface sites, which doubles the intrinsic activity in ester hydrogenation and increases the selectivity towards ethylene glycol from 23 % to 96 %.

    PubMed  PubMed Central  Google Scholar 

  145. Matsubu, J. C. et al. Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120–127 (2017). When adsorbates are present on the surface of rhodium nanoparticles prior to reduction treatment, an optimised support suboxide overlayer is generated, which steers the selectivity in CO 2 hydrogenation from predominantly CH 4 to CO.

    CAS  PubMed  Google Scholar 

  146. Wang, X. et al. Sacrificial adsorbate strategy achieved strong metal–support interaction of stable Cu nanocatalysts. ACS Appl. Energy Mater. 1, 1408–1414 (2018).

    CAS  Google Scholar 

  147. Kleijn, S. E. F., Lai, S. C. S., Koper, M. T. M. & Unwin, P. R. Electrochemistry of nanoparticles. Angew. Chem. Int. Ed. 53, 3558–3586 (2014).

    CAS  Google Scholar 

  148. Vannice, M. A. The catalytic synthesis of hydrocarbons from H2/CO mixtures over the group VIII metals: V. The catalytic behavior of silica-supported metals. J. Catal. 50, 228–236 (1977).

    CAS  Google Scholar 

Download references

Acknowledgements

Shell Global Solutions, the Netherlands Association for Scientific Research and Companhia Brasileira de Metalurgia e Mineração are thanked for financial support. K.P.d.J. acknowledges support from the European Research Council, EU FP7 ERC Advanced Grant no. 338846.

Author information

Authors and Affiliations

Authors

Contributions

T.W.v.D. and C.H.M. contributed equally. All authors were involved in literature survey, structuring and analysis of the data and writing of the manuscript.

Corresponding author

Correspondence to Krijn P. de Jong.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Deelen, T.W., Hernández Mejía, C. & de Jong, K.P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat Catal 2, 955–970 (2019). https://doi.org/10.1038/s41929-019-0364-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0364-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing