Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The emergence of Pd-mediated reversible oxidative addition in cross coupling, carbohalogenation and carbonylation reactions

Abstract

Exploiting the reversibility of chemical processes is a long-standing tactic of organic chemists, and permeates most areas of the discipline. The notion that oxidative addition of Pd(0) to Ar–X bonds can be considered an irreversible process has been challenged, periodically, over the last 30 years. Recent examples of methodologies that harness the reversibility of oxidative addition reactions in catalytic processes have enabled access to challenging carbocyclic and heterocyclic scaffolds. This Perspective seeks to describe the development of these processes from the early proof-of-principle findings, and highlight key challenges that remain in this avenue of research. In particular, we draw attention to significant deficiencies that remain in the choice of suitable ligands and additives for these transformations. We conclude by describing how the concept of reversible oxidative addition has recently been exploited in the development of novel carbonylation reactions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Applications of reductive elimination of ArPd(II)X to give Ar–X and Pd(0) discussed in this perspective.
Fig. 2: Development of reductive elimination of Ar–X from ArXPd(II)L2.
Fig. 3: Cyclization reactions involving reversible oxidative addition.
Fig. 4: Intramolecular carbohalogenation facilitated by reductive elimination and reversible oxidative addition.
Fig. 5: Reversible oxidative addition in carbonylation/decarbonylation sequences.

Similar content being viewed by others

References

  1. Xue, L. & Lin, Z. Theoretical aspects of palladium-catalysed carbon–carbon cross-coupling reactions. Chem. Soc. Rev. 39, 1692–1705 (2010).

    CAS  PubMed  Google Scholar 

  2. Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalysed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 51, 5062–5085 (2012).

    CAS  Google Scholar 

  3. Roy, A. H. & Hartwig, J. F. Reductive elimination of aryl halides upon addition of hindered alkylphosphines to dimeric arylpalladium(II) halide complexes. Organometallics 23, 1533–1541 (2004).

    CAS  Google Scholar 

  4. Roy, A. H. & Hartwig, J. F. Directly observed reductive elimination of aryl halides from monomeric arylpalladium(II) halide complexes. J. Am. Chem. Soc. 125, 13944–13945 (2003).

    CAS  PubMed  Google Scholar 

  5. Roy, A. H. & Hartwig, J. F. Reductive elimination of aryl halides from palladium(II). J. Am. Chem. Soc. 123, 1232–1233 (2001).

    CAS  PubMed  Google Scholar 

  6. Echavarren, A. M. & Stille, J. K. Palladium-catalysed coupling of aryl triflates with organostannanes. J. Am. Chem. Soc. 109, 5478–5486 (1987).

    CAS  Google Scholar 

  7. Ettorre, R. Mechanism of reductive elimination from an aryl derivative of platinum(IV). Inorg. Nucl. Chem. Lett. 5, 45–49 (1969).

    CAS  Google Scholar 

  8. Vikse, K., Naka, T., McIndoe, J. S., Besora, M. & Maseras, F. Oxidative additions of aryl halides to palladium proceed through the monoligated complex. ChemCatChem 5, 3604–3609 (2013).

    CAS  Google Scholar 

  9. Newman, S. G. & Lautens, M. The role of reversible oxidative addition in selective palladium(0)-catalysed intramolecular cross-couplings of polyhalogenated substrates: synthesis of brominated Indoles. J. Am. Chem. Soc. 132, 11416–11417 (2010).

    CAS  PubMed  Google Scholar 

  10. Petrone, D. A., Ye, J. & Lautens, M. Modern transition-metal-catalysed carbon–halogen bond formation. Chem. Rev. 116, 8003–8104 (2016).

    CAS  PubMed  Google Scholar 

  11. Hartwig, J. F. Electronic effects on reductive elimination to form carbon−carbon and carbon−heteroatom bonds from palladium(II) complexes. Inorg. Chem. 46, 1936–1947 (2007).

    CAS  PubMed  Google Scholar 

  12. Portnoy, M. & Milstein, D. Mechanism of aryl chloride oxidative addition to chelated palladium(0) complexes. Organometallics 12, 1665–1673 (1993).

    CAS  Google Scholar 

  13. Littke, A. F., Dai, C. & Fu, G. C. Versatile catalysts for the Suzuki cross-coupling of arylboronic acids with aryl and vinyl halides and triflates under mild conditions. J. Am. Chem. Soc. 122, 4020–4028 (2000).

    CAS  Google Scholar 

  14. Alcazar-Roman, L. M. & Hartwig, J. F. Mechanism of aryl chloride amination: base-induced oxidative addition. J. Am. Chem. Soc. 123, 12905–12906 (2001).

    CAS  PubMed  Google Scholar 

  15. Shen, X., Hyde, A. M. & Buchwald, S. L. Palladium-catalysed conversion of aryl and vinyl triflates to bromides and chlorides. J. Am. Chem. Soc. 132, 14076–14078 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pan, J., Wang, X., Zhang, Y. & Buchwald, S. L. An improved palladium-catalyzed conversion of aryl and vinyl triflates to bromides and chlorides. Org. Lett. 13, 4974–4976 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Watson, D. A. et al. Formation of ArF from LPdAr(F): catalytic conversion of aryl triflates to aryl fluorides. Science 325, 1661–1664 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ye, Y., Takada, T. & Buchwald, S. L. Palladium-catalysed fluorination of cyclic vinyl triflates: effect of TESCF3 as an additive. Angew. Chem. Int. Ed. 55, 15559–15563 (2016).

    CAS  Google Scholar 

  19. Sather, A. C. et al. A fluorinated ligand enables room-temperature and regioselective Pd-catalysed fluorination of aryl triflates and bromides. J. Am. Chem. Soc. 137, 13433–13438 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bryan, C. S. & Lautens, M. A Tandem catalytic approach to methyleneindenes: mechanistic insights into gem-dibromoolefin reactivity. Org. Lett. 12, 2754–2757 (2010).

    CAS  PubMed  Google Scholar 

  21. Newman, S. G., Aureggi, V., Bryan, C. S. & Lautens, M. Intramolecular cross-coupling of gem-dibromoolefins: a mild approach to 2-bromo benzofused heterocycles. Chem. Commun. 35, 5236–5238 (2009).

    Google Scholar 

  22. Song, X., Gao, C., Zhang, X. & Fan, X. Synthesis of diversely functionalized 2H-chromenes through Pd-catalyzed cascade reactions of 1,1-dibromoolefin derivatives with arylboronic acids. J. Org. Chem. 83, 15256–15267 (2018).

    CAS  PubMed  Google Scholar 

  23. Lautens, M. & Fang, Y.-Q. Synthesis of novel tetracycles via an intramolecular heck reaction with anti-hydride elimination. Org. Lett. 5, 3679–3682 (2003).

    CAS  PubMed  Google Scholar 

  24. Ye, S. & Wu, J. Palladium-catalysed carbonylative reaction of 1-(2,2-dibromovinyl)-2-alkenylbenzene and carbon monoxide, with phenol or alcohol. Org. Lett. 13, 5980–5983 (2011).

    CAS  PubMed  Google Scholar 

  25. Zeidan, N., Bognar, S., Lee, S. & Lautens, M. Palladium-catalysed synthesis of 2-cyanoindoles from 2-gem-dihalovinylanilines. Org. Lett. 19, 5058–5061 (2017).

    CAS  PubMed  Google Scholar 

  26. Nareddy, P., Mantilli, L., Guénée, L. & Mazet, C. Atropoisomeric (P,N) ligands for the highly enantioselective Pd-catalysed intramolecular asymmetric α-arylation of α-branched aldehydes. Angew. Chem. Int. Ed. 51, 3826–3831 (2012).

    CAS  Google Scholar 

  27. Watanabe, M., Yamamoto, T. & Nishiyama, M. A new palladium-catalysed intramolecular cyclization: synthesis of 1-aminoindole derivatives and functionalization of their carbocylic rings. Angew. Chem. Int. Ed. 39, 2501–2504 (2000).

    CAS  Google Scholar 

  28. Newman, S. G. & Lautens, M. Palladium-catalysed carboiodination of alkenes: carbon−carbon bond formation with retention of reactive functionality. J. Am. Chem. Soc. 133, 1778–1780 (2011).

    CAS  PubMed  Google Scholar 

  29. Lan, Y., Liu, P., Newman, S. G., Lautens, M. & Houk, K. N. Theoretical study of Pd(0)-catalysed carbohalogenation of alkenes: mechanism and origins of reactivities and selectivities in alkyl halide reductive elimination from Pd(ii) species. Chem. Sci. 3, 1987–1995 (2012).

    CAS  Google Scholar 

  30. Newman, S. G., Howell, J. K., Nicolaus, N. & Lautens, M. Palladium-catalysed carbohalogenation: bromide to iodide exchange and domino processes. J. Am. Chem. Soc. 133, 14916–14919 (2011).

    CAS  PubMed  Google Scholar 

  31. Petrone, D. A., Malik, H. A., Clemenceau, A. & Lautens, M. Functionalized chromans and isochromans via a diastereoselective Pd(0)-catalysed carboiodination. Org. Lett. 14, 4806–4809 (2012).

    CAS  PubMed  Google Scholar 

  32. Jia, X., Petrone, D. A. & Lautens, M. A Conjunctive carboiodination: indenes by a double carbopalladation–reductive elimination domino process. Angew. Chem. Int. Ed. 51, 9870–9872 (2012).

    CAS  Google Scholar 

  33. Petrone, D. A., Lischka, M. & Lautens, M. Harnessing reversible oxidative addition: application of diiodinated aromatic compounds in the carboiodination process. Angew. Chem. Int. Ed. 52, 10635–10638 (2013).

    CAS  Google Scholar 

  34. Liu, H., Li, C., Qiu, D. & Tong, X. Palladium-catalysed cycloisomerizations of (Z)-1-Iodo-1,6-dienes: iodine atom transfer and mechanistic insight to alkyl iodide reductive elimination. J. Am. Chem. Soc. 133, 6187–6193 (2011).

    CAS  PubMed  Google Scholar 

  35. Chen, C., Hu, J., Su, J. & Tong, X. Synthesis of substituted γ-lactam via Pd(0)-catalysed cyclization of alkene-tethered carbamoyl chloride. Tetrahedron Lett. 55, 3229–3231 (2014).

    CAS  Google Scholar 

  36. Chen, C., Hou, L., Cheng, M., Su, J. & Tong, X. Palladium(0)-catalysed iminohalogenation of alkenes: synthesis of 2-halomethyl dihydropyrroles and mechanistic insights into the alkyl halide bond formation. Angew. Chem. Int. Ed. 54, 3092–3096 (2015).

    CAS  Google Scholar 

  37. Le, C. M., Menzies, P. J. C., Petrone, D. A. & Lautens, M. Synergistic steric effects in the development of a palladium-catalysed alkyne carbohalogenation: stereodivergent synthesis of vinyl halides. Angew. Chem. Int. Ed. 54, 254–257 (2015).

    CAS  Google Scholar 

  38. Petrone, D. A., Yoon, H., Weinstabl, H. & Lautens, M. Additive effects in the palladium-catalysed carboiodination of chiral N-allyl carboxamides. Angew. Chem. Int. Ed. 53, 7908–7912 (2014).

    CAS  Google Scholar 

  39. Zhang, Z.-M. et al. Palladium/XuPhos-catalysed enantioselective carboiodination of olefin-tethered aryl iodides. J. Am. Chem. Soc. 141, 8110–8115 (2019).

    CAS  PubMed  Google Scholar 

  40. Sun, Y.-L. et al. Enantioselective cross-exchange between C−I and C−C σ bonds. Angew. Chem. Int. Ed. 58, 6747–6751 (2019).

    CAS  Google Scholar 

  41. Peng, J.-B., Wu, F.-P. & Wu, X.-F. First-row transition-metal-catalysed carbonylative transformations of carbon electrophiles. Chem. Rev. 119, 2090–2127 (2019).

    CAS  PubMed  Google Scholar 

  42. Quesnel, J. S. & Arndtsen, B. A. A palladium-catalysed carbonylation approach to acid chloride synthesis. J. Am. Chem. Soc. 135, 16841–16844 (2013).

    CAS  PubMed  Google Scholar 

  43. Quesnel, J. S., Kayser, L. V., Fabrikant, A. & Arndtsen, B. A. Acid chloride synthesis by the palladium-catalysed chlorocarbonylation of aryl bromides. Chem. Eur. J. 21, 9550–9555 (2015).

    CAS  PubMed  Google Scholar 

  44. Quesnel, J. S. et al. Computational study of the palladium-catalysed carbonylative synthesis of aromatic acid chlorides: the synergistic effect of PtBu3 and CO on reductive elimination. Chem. Eur. J. 22, 15107–15118 (2016).

    CAS  PubMed  Google Scholar 

  45. Tjutrins, J. & Arndtsen, B. A. An electrophilic approach to the palladium-catalysed carbonylative C–H functionalization of heterocycles. J. Am. Chem. Soc. 137, 12050–12054 (2015).

    CAS  PubMed  Google Scholar 

  46. Neumann, K. T., Lindhardt, A. T., Bang-Andersen, B. & Skrydstrup, T. Access to 2-(Het)aryl and 2-Styryl benzoxazoles via palladium-catalysed aminocarbonylation of aryl and vinyl bromides. Org. Lett. 17, 2094–2097 (2015).

    CAS  PubMed  Google Scholar 

  47. Torres, G. M. et al. Palladium-catalysed, multicomponent approach to β-lactams via aryl halide carbonylation. J. Org. Chem. 81, 12106–12115 (2016).

    CAS  PubMed  Google Scholar 

  48. Tjutrins, J. & Arndtsen, B. A. A palladium-catalysed synthesis of (hetero)aryl-substituted imidazoles from aryl halides, imines and carbon monoxide. Chem. Sci. 8, 1002–1007 (2017).

    CAS  PubMed  Google Scholar 

  49. Torres, G. M., Quesnel, J. S., Bijou, D. & Arndtsen, B. A. From aryl iodides to 1,3-dipoles: design and mechanism of a palladium catalysed multicomponent synthesis of pyrroles. J. Am. Chem. Soc. 138, 7315–7324 (2016).

    CAS  PubMed  Google Scholar 

  50. Dahl, K. & Nordeman, P. 11C-carbonylation through in situ generated 11C-benzoyl chlorides with tetrabutylammonium chloride as chloride source. Eur. J. Org. Chem. 2017, 2648–2651 (2017).

    CAS  Google Scholar 

  51. Gauthier, D. R., Rivera, N. R., Yang, H., Schultz, D. M. & Shultz, C. S. Palladium-catalysed carbon isotope exchange on aliphatic and benzoic acid chlorides. J. Am. Chem. Soc. 140, 15596–15600 (2018).

    CAS  PubMed  Google Scholar 

  52. Fang, X., Cacherat, B. & Morandi, B. CO- and HCl-free synthesis of acid chlorides from unsaturated hydrocarbons via shuttle catalysis. Nat. Chem. 9, 1105–1109 (2017).

    CAS  PubMed  Google Scholar 

  53. Bhawal, B. N. & Morandi, B. Catalytic isofunctional reactions-expanding the repertoire of shuttle and metathesis reactions. Angew. Chem. Int. Ed. 58, 10074–10103 (2019).

    CAS  Google Scholar 

  54. Lee, Y. H. & Morandi, B. Metathesis-active ligands enable a catalytic functional group metathesis between aroyl chlorides and aryl iodides. Nat. Chem. 10, 1016–1022 (2018).

    CAS  PubMed  Google Scholar 

  55. De La Higuera Macias, M. & Arndtsen, B. A. Functional group transposition: a palladium-catalysed metathesis of Ar–X σ-Bonds and acid chloride synthesis. J. Am. Chem. Soc. 140, 10140–10144 (2018).

    Google Scholar 

  56. Yoon, H., Marchese, A. D. & Lautens, M. Carboiodination Catalyzed by Nickel. J. Am. Chem. Soc. 140, 10950–10954 (2018).

    CAS  PubMed  Google Scholar 

  57. Marchese, A. D., Lind, F., Mahon, Á. E., Yoon, H. & Lautens, M. Forming benzylic iodides via a nickel catalysed diastereoselective dearomative carboiodination reaction of indoles. Angew. Chem. Int. Ed. 58, 5095–5099 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

P. Byrne is thanked for useful discussion, and N. Kayambu is acknowledged for his assistance in the preliminary literature search.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed jointly to the writing of this manuscript.

Corresponding authors

Correspondence to Mark Lautens or Gerard P. McGlacken.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, D.J., Lautens, M. & McGlacken, G.P. The emergence of Pd-mediated reversible oxidative addition in cross coupling, carbohalogenation and carbonylation reactions. Nat Catal 2, 843–851 (2019). https://doi.org/10.1038/s41929-019-0361-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0361-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing