Photocatalytic regio- and stereoselective C(sp3)–H functionalization of benzylic and allylic hydrocarbons as well as unactivated alkanes


The selective functionalization of inert C(sp3)–H bonds is extremely attractive in organic synthesis and catalysis science, but the conversion of hydrocarbons lacking directing groups into chiral molecules through catalytic C(sp3)–H functionalization is formidably challenging. Here, to address this problem, we have developed a photochemical system consisting of a hydrogen atom transfer organophotocatalyst and a chiral catalyst containing an earth-abundant metal. With the cooperative catalysts and imine partners, a wide range of benzylic, allylic hydrocarbons and unactivated alkanes can be converted to functionalized chiral products. The readily tunable bisoxazoline catalysts of copper or other metals exhibit precise regional recognition and asymmetric induction towards these inert C–H bonds. The reactions are applicable to many compounds including small hydrocarbons, branched alkanes, cycloalkanes and more complex medicinal agents. This method provides an economic and rapid construction of optically active compounds, starting from the most basic chemical feedstocks.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Direct and selective C(sp3)–H functionalization of pure hydrocarbons.
Fig. 2: Initial design and mechanistic hypothesis.
Fig. 3: Reaction scope.
Fig. 4: Reaction scope.
Fig. 5: Mechanistic study.
Fig. 6: Synthetic utility of the method.

Data availability

The data supporting the findings of this study are available from the corresponding author upon request.


  1. 1.

    Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Caballero, A. et al. Silver-catalyzed C–C bond formation between methane and ethyl diazoacetate in supercritical CO2. Science 332, 835–838 (2011).

    CAS  PubMed  Google Scholar 

  3. 3.

    Cook, A. K., Schimler, S. D., Matzger, A. J. & Sanford, M. S. Catalyst-controlled selectivity in the C–H borylation of methane and ethane. Science 351, 1421–1424 (2016).

    CAS  PubMed  Google Scholar 

  4. 4.

    Zhang, Rj. K. et al. Enzymatic assembly of carbon–carbon bonds via iron-catalysed sp 3 C–H functionalization. Nature 565, 67–72 (2018).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Prier, C. K., Zhang, R. K., Buller, A. R., Brinkmann-Chen, S. & Arnold, F. H. Enantioselective, intermolecular benzylic C–H amination catalysed by an engineered iron-haem enzyme. Nat. Chem. 9, 629–634 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Cuthbertson, J. D. & MacMillan, D. W. C. The direct arylation of allylic sp 3 C–H bonds via organic and photoredox catalysis. Nature 519, 74–77 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Tran, B. L., Li, B., Driess, M. & Hartwig, J. F. Copper-catalyzed intermolecular amidation and imidation of unactivated alkanes. J. Am. Chem. Soc. 136, 2555–2563 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Mukherjee, S., Maji, B., Tlahuext-Aca, A. & Glorius, F. Visible-light-promoted activation of unactivated C(sp 3)–H bonds and their selective trifluoromethylthiolation. J. Am. Chem. Soc. 138, 16200–16203 (2016).

    CAS  PubMed  Google Scholar 

  9. 9.

    Sharma, A. & Hartwig, J. F. Metal-catalysed azidation of tertiary C–H bonds suitable for late-stage functionalization. Nature 517, 600–604 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Tang, S., Wang, P., Li, H. & Lei, A. Multimetallic catalysed radical oxidative C(sp 3)–H/C(sp)–H cross-coupling between unactivated alkanes and terminal alkynes. Nat. Commun. 7, 11676 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Clark, J. R., Feng, K., Sookezian, A. & White, M. C. Manganese-catalysed benzylic C(sp3)–H amination for late-stage functionalization. Nat. Chem. 10, 583–591 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Hu, A., Guo, J. J., Pan, H. & Zuo, Z. Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis. Science 361, 668–672 (2018).

    CAS  PubMed  Google Scholar 

  13. 13.

    Margrey, K. A., Czaplyski, W. L., Nicewicz, D. A. & Alexanian, E. J. A general strategy for aliphatic C–H functionalization enabled by organic photoredox catalysis. J. Am. Chem. Soc. 140, 4213–4217 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Yi, H. et al. Recent advances in radical C–H activation/radical cross-coupling. Chem. Rev. 117, 9016–9085 (2017).

    CAS  PubMed  Google Scholar 

  15. 15.

    Saint–Denis, T. G., Zhu, R. –Y., Chen, G., Wu, Q. –F. & Yu, J. –Q. Enantioselective C(sp 3)–H bond activation by chiral transition metal catalysts. Science 359, eaao4798 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Rouquet, G. & Chatani, N. Catalytic functionalization of C(sp2)–H and C(sp3)–H bonds using bidentate directing groups. Angew. Chem. Int. Ed. 52, 11726–11743 (2013).

    CAS  Google Scholar 

  17. 17.

    He, J. et al. Ligand-controlled C(sp3)–H arylation and olefination in synthesis of unnatural chiral α-amino acids. Science 343, 1216–1220 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Zhang, F. –L., Hong, K., Li, T. –J., Park, H. & Yu, J. –Q. Functionalization of C(sp 3)–H bonds using a transient directing group. Science 351, 252–256 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Choi, G. J., Zhu, Q., Miller, D. C., Gu, C. J. & Knowles, R. R. Catalytic alkylation of remote C–H bonds enabled by proton-coupled electron transfer. Nature 539, 268–271 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Chu, J. C. K. & Rovis, T. Amide-directed photoredox-catalysed C–C bond formation at unactivated sp 3 C–H bonds. Nature 539, 272–275 (2016).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Liao, K. et al. Site-selective and stereoselective functionalization of nonactivated tertiary C–H bonds. Nature 551, 609–613 (2017).

    CAS  PubMed  Google Scholar 

  22. 22.

    Liao, K., Negretti, S., Musaev, D. G., Bacsa, J. & Davies, H. M. L. Site-selective and stereoselective functionalization of unactivated C–H bonds. Nature 533, 230–234 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Liao, K. et al. Design of catalysts for site-selective and enantioselective functionalization of non-activated primary C–H bonds. Nat. Chem. 10, 1048–1055 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Fu, J. T., Ren, Z., Bacsa, J., Musaev, D. G. & Davies, H. M. L. Desymmetrization of cyclohexanes by site- and stereoselective C–H functionalization. Nature 564, 395–399 (2018).

    CAS  PubMed  Google Scholar 

  25. 25.

    Mazzarella, D., Crisenza, G. E. M. & Melchiorre, P. Asymmetric photocatalytic C−H functionalization of toluene and derivatives. J. Am. Chem. Soc. 140, 8439–8443 (2018).

    CAS  PubMed  Google Scholar 

  26. 26.

    Zhang, W. et al. Enantioselective cyanation of benzylic C–H bonds via copper catalyzed radical relay. Science 353, 1014–1018 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Li, F. et al. Chiral acid-catalysed enantioselective C–H functionalization of toluene and its derivatives driven by visible light. Nat. Commun. 10, 1774 (2019).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Narayanam, J. M. R. & Stephenson, C. R. J. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 40, 102–113 (2011).

    CAS  PubMed  Google Scholar 

  29. 29.

    Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Chen, J. –R., Hu, X. –Q., Lu, L. –Q. & Xiao, W. –J. Visible light photoredoxcontrolled reactions of N-radicals and radical ions. Chem. Soc. Rev. 45, 2044–2056 (2016).

    CAS  PubMed  Google Scholar 

  31. 31.

    Perry, I. B. et al. Direct arylation of strong aliphatic C–H bonds. Nature 560, 70–75 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Heitz, D. R., Tellis, J. C. & Molander, G. A. Photochemical nickel-catalyzed C–H arylation: synthetic scope and mechanistic investigations. J. Am. Chem. Soc. 138, 12715–12718 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Ackerman, L. K. G., Alvarado, J. I. M. & Doyle, A. G. Direct C−C bond formation from alkanes using Ni-photoredox catalysis. J. Am. Chem. Soc. 140, 14059–14063 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Shen, Y., Gu, Y. & Martin, R. sp3 C–H arylation and alkylation enabled by the synergy of triplet excited ketones and nickel catalysts. J. Am. Chem. Soc. 140, 12200–12209 (2018).

    CAS  PubMed  Google Scholar 

  35. 35.

    Fan, X. –Z. et al. Eosin Y as a direct hydrogen-atom transfer photocatalyst for the functionalization of C–H bonds. Angew. Chem. Int. Ed. 57, 8514–8518 (2018).

    CAS  Google Scholar 

  36. 36.

    Dewanji, A., Krach, P. E. & Rueping, M. The dual role of benzophenone in visible-light/nickel photoredox-catalyzed C−H arylations: hydrogen-atom transfer and energy transfer. Angew. Chem. Int. Ed. 58, 3566–3570 (2019).

    CAS  Google Scholar 

  37. 37.

    Xia, J.-B., Zhu, C. & Chen, C. Visible light-promoted metal-free C–H activation: diarylketone-catalyzed selective benzylic mono- and difuorination. J. Am. Chem. Soc. 135, 17494–17500 (2013).

    CAS  PubMed  Google Scholar 

  38. 38.

    Kamijo, S., Kamijo, K., Maruoka, K. & Murafuji, T. Aryl ketone catalyzed radical allylation of C(sp3)−H bonds under photoirradiation. Org. Lett. 18, 6516–6519 (2016).

    CAS  PubMed  Google Scholar 

  39. 39.

    Li, Y. et al. Copper(II)-catalyzed asymmetric photoredox reactions: enantioselective alkylation of imines driven by visible light. J. Am. Chem. Soc. 140, 15850–15858 (2018).

    CAS  PubMed  Google Scholar 

  40. 40.

    Shen, X. et al. A chiral nickel DBFOX complex as a bifunctional catalyst for visible-light-promoted asymmetric photoredox reactions. Chem. Sci. 9, 4562–4568 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Ma, J. –A. Recent developments in the catalytic asymmetric synthesis of α- and β-amino acids. Angew. Chem. Int. Ed. 42, 4290–4299 (2003).

    CAS  Google Scholar 

  42. 42.

    Ravelli, D., Fagnoni, M., Fukuyama, T., Nishikawa, T. & Ryu, I. Site-selective C−H functionalization by decatungstate anion photocatalysis: synergistic control by polar and steric effects expands the reaction scope. ACS Catal. 8, 701–713 (2018).

    CAS  Google Scholar 

  43. 43.

    Wang, F. –L. et al. Catalytic asymmetric radical diamination of alkenes. Chem 3, 979–990 (2017).

    CAS  Google Scholar 

  44. 44.

    Blanksby, S. J. & Ellison, G. B. Bond dissociation energies of organic molecules. Acc. Chem. Res. 36, 255–263 (2003).

    CAS  PubMed  Google Scholar 

  45. 45.

    Liu, W. et al. Catalyst-controlled selective functionalization of unactivated C−H bonds in the presence of electronically activated C−H bonds. J. Am. Chem. Soc. 140, 12247–12255 (2018).

    CAS  PubMed  Google Scholar 

  46. 46.

    Qin, C. & Davies, H. M. L. Role of sterically demanding chiral dirhodium catalysts in site-selective C−H functionalization of activated primary C−H bonds. J. Am. Chem. Soc. 136, 9792–9796 (2014).

    CAS  PubMed  Google Scholar 

  47. 47.

    Davies, H. M. L. & Hansen, T. Asymmetric intermolecular carbenoid C–H insertions catalyzed by rhodium(II) (S)-N-(p-dodecylphenyl)sulfonylprolinate. J. Am. Chem. Soc. 119, 9075–9076 (1997).

    CAS  Google Scholar 

  48. 48.

    Cundari, T. R. et al. Copper-catalyzed C(sp3)–H amidation: sterically driven primary and secondary C–H site-selectivity. Angew. Chem. Int. Ed. 58, 3421–3425 (2019).

    Google Scholar 

  49. 49.

    Yoon, T. P. Photochemical stereocontrol using tandem photoredox–chiral Lewis acid catalysis. Acc. Chem. Res. 49, 2307–2315 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Bartok, M. Unexpected inversions in asymmetric reactions: reactions with chiral metal complexes, chiral organocatalysts, and heterogeneous chiral catalysts. Chem. Rev. 110, 1663–1705 (2010).

    CAS  PubMed  Google Scholar 

  51. 51.

    Burk, M. J., Allen, J. G. & Kiesman, W. F. Highly regio- and enantioselective catalytic hydrogenation of enamides in conjugated diene systems: synthesis and application of γ,δ-unsaturated amino acids. J. Am. Chem. Soc. 120, 657–663 (1998).

    CAS  Google Scholar 

Download references


We gratefully acknowledge funding from the National Natural Science Foundation of China (grant no. 21572184), the Natural Science Foundation of Fujian Province of China (grant no. 2017J06006) and the Fundamental Research Funds for the Central Universities (grant no. 20720190048).

Author information




L.G. and Y.L. conceived and designed the project. Y.L. and M.L. conducted the experiments. Y.L., M.L. and L.G. analysed and interpreted the experimental data. L.G. prepared the manuscript. Y.L. prepared the Supplementary Information.

Corresponding author

Correspondence to Lei Gong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Supplementary Figs. 1–77, Supplementary Tables 1–3 and Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lei, M. & Gong, L. Photocatalytic regio- and stereoselective C(sp3)–H functionalization of benzylic and allylic hydrocarbons as well as unactivated alkanes. Nat Catal 2, 1016–1026 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing