Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Operando monitoring of temperature and active species at the single catalyst particle level

Abstract

The development of improved catalysts requires insights into the relationship between catalytic activity and catalyst structure, including the underlying reaction mechanism. Here, we demonstrate a unique set of catalyst extrudate sensors that allow for the simultaneous detection of local temperature by luminescence thermometry, and of surface species by shell-isolated nanoparticle-enhanced Raman spectroscopy. This sensing approach was applied to the characterization of direct conversion of syngas into hydrocarbons and C2+ oxygenates over supported Rh and RhFe catalysts. Luminescence thermometry demonstrated a mismatch between the set temperature and the local catalyst temperature, with variations up to 40 °C. Furthermore, by investigating the surface species on varying extrudate and catalyst compositions, we identified tilted carbonyl species on the Rh/SiO2 interface that are probable precursors for the hydrogen-assisted CO dissociation. The implementation of extrudate catalyst sensors as a characterization tool provides a unique approach towards the further understanding of the relevant parameters in catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of a catalyst extrudate sensor for operando spectroscopy research.
Fig. 2: Electron microscopy images of the nanoparticle sensors and catalysts.
Fig. 3: Temperature-dependent luminescence of NaYF4:Er3+,Yb3+.
Fig. 4: Combined operando luminescence thermometry with SHINERS and online MS.
Fig. 5: Rh-catalysed CO hydrogenation pathways.
Fig. 6: Catalyst–support interface probed with SHINERS during CO hydrogenation at 250 °C.
Fig. 7: Altering product selectivity of Rh catalysts by Fe alloying for CO hydrogenation at 250 °C.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ertl, G. Reactions at Solid Surfaces (John Wiley & Sons, 2009).

  2. Dumesic, J. A., Huber, G. W. & Boudar, M. in Handbook of Heterogeneous Catalysis (eds Ertl, G. et al.) 1–48 (Wiley-VCH, 2008).

  3. Somorjai, G. A. & Li, Y. Introduction to Surface Chemistry and Catalysis (John Wiley & Sons, 2010).

  4. Bañares, M. A. Operando spectroscopy: the knowledge bridge to assessing structure-performance relationships in catalyst nanoparticles. Adv. Mater. 23, 5293–5301 (2011).

    PubMed  Google Scholar 

  5. Buurmans, I. L. C. & Weckhuysen, B. M. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat. Chem. 4, 873–886 (2012).

    CAS  PubMed  Google Scholar 

  6. Weckhuysen, B. M. Determining the active site in a catalytic process: operando spectroscopy is more than a buzzword. Phys. Chem. Chem. Phys. 5, 4351–43560 (2003).

    CAS  Google Scholar 

  7. Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).

    CAS  PubMed  Google Scholar 

  8. Ding, S.-Y. et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021 (2016).

    CAS  Google Scholar 

  9. Li, J.-F., Zhang, Y.-J., Ding, S.-Y., Panneerselvam, R. & Tian, Z.-Q. Core-shell nanoparticle-enhanced raman spectroscopy. Chem. Rev. 117, 5002–5069 (2017).

    CAS  PubMed  Google Scholar 

  10. Schlücker, S. Surface-enhanced raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed. Engl. 53, 4756–4795 (2014).

    PubMed  Google Scholar 

  11. Wang, Y. et al. In situ analysis of surface catalytic reactions using shell-isolated nanoparticle-enhanced raman spectroscopy. Anal. Chem. 91, 1675–1685 (2019).

    CAS  PubMed  Google Scholar 

  12. Hartman, T. & Weckhuysen, B. M. Thermally stable TiO2- and SiO2-shell-isolated Au nanoparticles for in situ plasmon-enhanced Raman spectroscopy of hydrogenation catalysts. Chem. Eur. J. 24, 3733–3741 (2018).

    CAS  PubMed  Google Scholar 

  13. Zhang, H. et al. In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat. Commun. 8, 15447 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hwang, S. & Smith, R. Optimum reactor design in methanation processes with nonuniform catalysts. Chem. Eng. Commun. 196, 616–642 (2009).

    CAS  Google Scholar 

  15. Grunwaldt, J. D., Wagner, J. B. & Dunin-Borkowski, R. E. Imaging catalysts at work: a hierarchical approach from the macro- to the meso- and nano-scale. ChemCatChem 5, 62–80 (2013).

    CAS  Google Scholar 

  16. Koptyug, I. V., Khomichev, A. V., Lysova, A. A. & Sagdeev, R. Z. Spatially resolved NMR thermometry of an operating fixed-bed catalytic reactor. J. Am. Chem. Soc. 130, 10452–10453 (2008).

    CAS  PubMed  Google Scholar 

  17. Kimmerle, B. et al. Visualizing a catalyst at work during the ignition of the catalytic partial oxidation of methane. J. Phys. Chem. C 113, 3037–3040 (2009).

    CAS  Google Scholar 

  18. Simeone, M., Salemme, L., Allouis, C. & Volpicelli, G. Temperature profile in a reverse flow reactor for catalytic partial oxidation of methane by fast IR imaging. AIChE J. 54, 2689–2698 (2008).

    CAS  Google Scholar 

  19. Yarulina, I., Kapteijn, F. & Gascon, J. The importance of heat effects in the methanol to hydrocarbons reaction over ZSM-5: on the role of mesoporosity on catalyst performance. Catal. Sci. Technol. 6, 5320–5325 (2016).

    CAS  Google Scholar 

  20. Jaque, D. & Vetrone, F. Luminescence nanothermometry. Nanoscale 4, 4301–4326 (2012).

    CAS  PubMed  Google Scholar 

  21. Brites, C. D. S. et al. Thermometry at the nanoscale. Nanoscale 4, 4799–4829 (2012).

    CAS  PubMed  Google Scholar 

  22. Geitenbeek, R. G. et al. In situ luminescence thermometry to locally measure temperature gradients during catalytic reactions. ACS Catal. 8, 2397–2401 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Vetrone, F. et al. Temperature sensing using fluorescent nanothermometers. ACS Nano 4, 3254–3258 (2010).

    CAS  PubMed  Google Scholar 

  24. Li, T., Guo, C., Zhou, S., Duan, C. & Yin, M. Highly sensitive optical thermometry of Yb3+-Er3+ codoped AgLa(MoO4)2 green upconversion phosphor. J. Am. Ceram. Soc. 98, 2812–2816 (2015).

    CAS  Google Scholar 

  25. Xu, X. et al. α-NaYb(Mn)F4:Er3+/Tm3+@NaYF4 UCNPs as “band-shape” luminescent nanothermometers over a wide temperature range. ACS Appl. Mater. Interfaces 7, 20813–20819 (2015).

    CAS  PubMed  Google Scholar 

  26. Geitenbeek, R. G. et al. NaYF4:Er3+,Yb3+/SiO2 core/shell upconverting nanocrystals for luminescence thermometry up to 900 K. J. Phys. Chem. C 121, 3503–3510 (2017).

    CAS  Google Scholar 

  27. Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 104, 139–173 (2004).

    CAS  PubMed  Google Scholar 

  28. Carnall, W. T., Crosswhite, H. & Crosswhite, H. M. Energy level structure and transition probabilities of the trivalent lanthanides in LaF 3 (Argonne National Laboratory, 1978).

  29. Svelto, O. Principles of Lasers 4th edn (Springer, 1998).

  30. Inoue, T., Iizuka, T. & Tanabe, K. Hydrogenation of carbon dioxide and carbon monoxide over supported rhodium catalysts under 10 bar pressure. Appl. Catal. 46, 1–9 (1989).

    CAS  Google Scholar 

  31. Rumble, J. R. CRC Handbook of Chemistry and Physics 98th edn (CRC Press, 2017).

  32. Subramanian, N. D. et al. La and/or V oxide promoted Rh/SiO2 catalysts: effect of temperature, H2/CO ratio, space velocity, and pressure on ethanol selectivity from syngas. J. Catal. 272, 204–209 (2010).

    CAS  Google Scholar 

  33. Hongmei, Y. et al. The performance of C2 oxygenates synthesis from syngas over Rh−Mn−Li−Fe SiO2 catalysts with various Rh loadings. Energy Fuels 17, 1401–1406 (2003).

    Google Scholar 

  34. Spivey, J. J. & Egbebi, A. Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. Chem. Soc. Rev. 36, 1514–1528 (2007).

    CAS  PubMed  Google Scholar 

  35. Williams, C. T., Black, C. A., Weaver, M. J. & Takoudis, C. G. Adsorption and hydrogenation of carbon monoxide on polycrystalline rhodium at high gas pressures. J. Phys. Chem. B 101, 2874–2883 (1997).

    CAS  Google Scholar 

  36. Williams, C. T., Chen, K.-Y., Takoudis, C. G. & Weaver, M. J. Reduction kinetics of surface rhodium oxide by hydrogen and carbon monoxide at ambient gas pressures as probed by transient surface-enhanced raman spectroscopy. J. Phys. Chem. B 102, 4785–4794 (1998).

    CAS  Google Scholar 

  37. Arakawa, H. et al. High pressure in situ FT-IR study of CO hydrogenation over Rh/SiO2 catalyst. Chem. Lett. 14, 23–26 (1985).

    Google Scholar 

  38. Chuang, S. Role of silver promoter in carbon monoxide hydrogenation and ethylene hydroformylation over Rh/SiO2 catalysts. J. Catal. 138, 536–546 (1992).

    CAS  Google Scholar 

  39. Chuang, S. S. C. & Pien, S. I. Infrared study of the CO insertion reaction on reduced, oxidized, and sulfided Rh/SiO2 catalysts. J. Catal. 135, 618–634 (1992).

    CAS  Google Scholar 

  40. Paredes-Nunez, A. et al. CO hydrogenation on cobalt-based catalysts: tin poisoning unravels CO in hollow sites as a main surface intermediate. Angew. Chem. Int. Ed. Engl. 57, 547–550 (2018).

    CAS  PubMed  Google Scholar 

  41. Chuang, S. S. C., Stevens, R. W. & Khatri, R. Mechanism of C2+ oxygenate synthesis on Rh catalysts. Top. Catal. 32, 225–232 (2005).

    CAS  Google Scholar 

  42. Tóth, M. et al. Hydrogenation of carbon dioxide on Rh, Au and Au-Rh bimetallic clusters supported on titanate nanotubes, nanowires and TiO2. Top. Catal. 55, 747–756 (2012).

    Google Scholar 

  43. Hadjiivanov, K. I. & Vayssilov, G. N. Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Adv. Catal. 47, 307–511 (2002).

    CAS  Google Scholar 

  44. Hernández Mejía, C., van Deelen, T. W. & de Jong, K. P. Activity enhancement of cobalt catalysts by tuning metal-support interactions. Nat. Commun. 9, 4459 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Ichikawa, M. & Fukushima, T. Infrared studies of metal additive effects on CO chemisorption modes SiO2-supported Rh-Mn, -Ti, and -Fe catalysts. J. Phys. Chem. 89, 1564–1567 (1985).

    CAS  Google Scholar 

  46. Erdöhelyi, A. & Solymosi, F. Effects of the support on the adsorption and dissociation of CO and on the reactivity of surface carbon on Rh catalysts. J. Catal. 84, 446–460 (1983).

    Google Scholar 

  47. Degioanni, S. et al. Surface-enhanced Raman scattering of amorphous TiO2 thin films by gold nanostructures: revealing first layer effect with thickness variation. J. Appl. Phys. 114, 234307 (2013).

    Google Scholar 

  48. Weng, S. X., Anderson, A. & Torrie, B. H. Raman and far-infrared spectra of crystalline formaldehyde, H2CO and D2CO. J. Raman Spectrosc. 20, 789–794 (1989).

    CAS  Google Scholar 

  49. Mitchell, W. J., Xie, J., Jachimowski, T. A. & Weinberg, W. H. Carbon monoxide hydrogenation on the Ru(001) surface at low temperature using gas-phase atomic hydrogen: spectroscopic evidence for the carbonyl insertion mechanism on a transition metal surface. J. Am. Chem. Soc. 117, 2606–2617 (1995).

    CAS  Google Scholar 

  50. Xu, C. et al. Interfacing with silica boosts the catalysis of copper. Nat. Commun. 9, 3367 (2018).

    PubMed  PubMed Central  Google Scholar 

  51. Liu, Y. et al. Synthesis gas conversion over Rh-based catalysts promoted by Fe and Mn. ACS Catal. 7, 4550–4563 (2017).

    CAS  Google Scholar 

  52. Huang, A. X. et al. Atomic-scale observation of the metal-promoter interaction in Rh-based syngas upgrading catalysts. Angew. Chem. Int. Ed. Engl. 58, 8709–8713 (2019).

    CAS  PubMed  Google Scholar 

  53. Ao, M., Pham, G. H., Sunarso, J., Tade, M. O. & Liu, S. Active centers of catalysts for higher alcohol synthesis from syngas: a review. ACS Catal. 8, 7025–7050 (2018).

    CAS  Google Scholar 

  54. Palomino, R. M., Magee, J. W., Llorca, J., Senanayake, S. D. & White, M. G. The effect of Fe–Rh alloying on CO hydrogenation to C2+ oxygenates. J. Catal. 329, 87–94 (2015).

    CAS  Google Scholar 

  55. Wang, J., Zhang, Q. & Wang, Y. Rh-catalyzed syngas conversion to ethanol: studies on the promoting effect of FeOx. Catal. Today 171, 257–265 (2011).

    CAS  Google Scholar 

  56. Koole, R. et al. On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method. Chem. Mater. 20, 2503–2512 (2008).

    CAS  Google Scholar 

  57. Li, Z. & Zhang, Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 19, 345606 (2008).

    PubMed  Google Scholar 

  58. Wang, F., Deng, R. & Liu, X. Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nat. Protoc. 9, 1634–1644 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Netherlands Center for Multiscale Catalytic Energy Conversion, an Netherlands Organization for Scientific Research Gravitation programme funded by the Ministry of Education, Culture and Science of the government of the Netherlands. We thank the Netherlands Organization for Scientific Research and Shell Global Solutions in the framework of the Chemical Innovation Partnership Project for financial support. We gratefully acknowledge A. Meijerink (Utrecht University, UU) for his valuable input and discussions. We thank N. Krans (UU) for her contributions to the TEM-EDX measurements, I. ten Have (UU) for her contributions to the SEM measurements and S. van Vreeswijk (UU) and R. Oord (UU) for their help with the GC measurements.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with contributions of all authors. All authors have given approval to the final version of the manuscript. T.H., R.G.G. and B.M.W. conceived and designed the experiments. NaYF4@SiO2 NPs were prepared by R.G.G. and were used by G.T.W. to form extrudates. T.H prepared and deposited Au@SiO2 and Au@TiO2 SHINs with Rh on the extrudates. The operando experiments were performed by T.H. and R.G.G.

Corresponding author

Correspondence to Bert M. Weckhuysen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Supplementary Table 1 and Supplementary References.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartman, T., Geitenbeek, R.G., Whiting, G.T. et al. Operando monitoring of temperature and active species at the single catalyst particle level. Nat Catal 2, 986–996 (2019). https://doi.org/10.1038/s41929-019-0352-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0352-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing