Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-proteinaceous hydrolase comprised of a phenylalanine metallo-supramolecular amyloid-like structure

Abstract

Enzymatic activity is crucial for various technological applications, yet the complex structures and limited stability of enzymes often hinder their use. Hence, de novo design of robust biocatalysts that are much simpler than their natural counterparts and possess enhanced catalytic activity has long been a goal in biotechnology. Here, we present evidence for the ability of a single amino acid to self-assemble into a potent and stable catalytic structural entity. Spontaneously, phenylalanine (F) molecules coordinate with zinc ions to form a robust, layered, supramolecular amyloid-like ordered architecture (F–Zn(ii)) and exhibit remarkable carbonic anhydrase-like catalytic activity. Notably, amongst the reported artificial biomolecular hydrolases, F–Zn(ii) displays the lowest molecular mass and highest catalytic efficiency, in addition to reusability, thermal stability, substrate specificity, stereoselectivity and rapid catalytic CO2 hydration ability. Thus, this report provides a rational path towards future de novo design of minimalistic biocatalysts for biotechnological and industrial applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of a minimalistic F–Zn(ii) biocatalyst through bioinspiration from structural insights of CA II.
Fig. 2: Characterization of F–Zn(ii).
Fig. 3: Catalytic esterase activity of F–Zn(ii).
Fig. 4: F–Zn(ii) catalytic esterase reaction mechanism and the chemical structures along the reaction pathway.
Fig. 5: F–Zn(ii) catalytic carbon dioxide hydration and sequestration.

Similar content being viewed by others

Data availability

The X-ray crystallographic coordinates for the structure reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition 1850564. Other data that support the plots within this paper and other finding of this study are available from the corresponding author upon reasonable request.

References

  1. Vendruscolo, M. & Dobson, C. M. Structural biology: dynamic visions of enzymatic reactions. Science 313, 1586–1587 (2006).

    CAS  PubMed  Google Scholar 

  2. DeGrado, W., Wasserman, Z. & Lear, J. Protein design, a minimalist approach. Science 243, 622–628 (1989).

    CAS  PubMed  Google Scholar 

  3. Benkovic, S. J. & Hammes-Schiffer, S. A perspective on enzyme catalysis. Science 301, 1196–1202 (2003).

    CAS  PubMed  Google Scholar 

  4. Aldridge, S. Industry backs biocatalysis for greener manufacturing. Nat. Biotechnol. 31, 95–96 (2013).

    CAS  PubMed  Google Scholar 

  5. Schmid, A. et al. Industrial biocatalysis today and tomorrow. Nature 409, 258–268 (2001).

    CAS  PubMed  Google Scholar 

  6. Arnold, F. H. Combinatorial and computational challenges for biocatalyst design. Nature 409, 253–257 (2001).

    CAS  PubMed  Google Scholar 

  7. Christianson, D. W. & Fierke, C. A. Carbonic anhydrase: evolution of the zinc binding site by nature and by design. Acc. Chem. Res. 29, 331–339 (1996).

    CAS  Google Scholar 

  8. Boone, C., Habibzadegan, A., Gill, S. & McKenna, R. Carbonic anhydrases and their biotechnological applications. Biomolecules 3, 553–562 (2013).

    PubMed  PubMed Central  Google Scholar 

  9. Song, W. J. & Tezcan, F. A. A designed supramolecular protein assembly with in vivo enzymatic activity. Science 346, 1525–1528 (2014).

    CAS  PubMed  Google Scholar 

  10. Zastrow, M. L., Peacock, A. F. A., Stuckey, J. A. & Pecoraro, V. L. Hydrolytic catalysis and structural stabilization in a designed metalloprotein. Nat. Chem. 4, 118–123 (2012).

    CAS  Google Scholar 

  11. Rufo, C. M. et al. Short peptides self-assemble to produce catalytic amyloids. Nat. Chem. 6, 303–309 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Guler, M. O. & Stupp, S. I. A self-assembled nanofiber catalyst for ester hydrolysis. J. Am. Chem. Soc. 129, 12082–12083 (2007).

    CAS  PubMed  Google Scholar 

  13. Friedmann, M. P. et al. Towards prebiotic catalytic amyloids using high throughput screening. PLoS ONE 10, e0143948 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. Zhang, C. et al. Switchable hydrolase based on reversible formation of supramolecular catalytic site using a self-assembling peptide. Angew. Chem. Int. Ed. Engl. 56, 14511–14515 (2017).

    CAS  PubMed  Google Scholar 

  15. Singh, N., Conte, M. P., Ulijn, R. V., Miravet, J. F. & Escuder, B. Insight into the esterase like activity demonstrated by an imidazole appended self-assembling hydrogelator. Chem. Commun. 51, 13213–13216 (2015).

    CAS  Google Scholar 

  16. Huang, Z. et al. Self-assembly of amphiphilic peptides into bio-functionalized nanotubes: a novel hydrolase model. J. Mater. Chem. B 1, 2297–2304 (2013).

    CAS  Google Scholar 

  17. Zhang, C. et al. Self-assembled peptide nanofibers designed as biological enzymes for catalyzing ester hydrolysis. ACS Nano 8, 11715–11723 (2014).

    CAS  PubMed  Google Scholar 

  18. Al-Garawi, Z. S. et al. The amyloid architecture provides a scaffold for enzyme-like catalysts. Nanoscale 9, 10773–10783 (2017).

    CAS  PubMed  Google Scholar 

  19. Lee, M. et al. Zinc-binding structure of a catalytic amyloid from solid-state NMR. Proc. Natl Acad. Sci. USA 114, 6191–6196 (2017).

    CAS  PubMed  Google Scholar 

  20. Lengyel, Z., Rufo, C. M., Moroz, Y. S., Makhlynets, O. V. & Korendovych, I. V. Copper-containing catalytic amyloids promote phosphoester hydrolysis and tandem reactions. ACS Catal. 8, 59–62 (2018).

    CAS  PubMed  Google Scholar 

  21. Gazit, E. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem. Soc. Rev. 36, 1263–1269 (2007).

    CAS  PubMed  Google Scholar 

  22. Tao, K., Makam, P., Aizen, R. & Gazit, E. Self-assembling peptide semiconductors. Science 358, eaam9756 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. Makam, P. & Gazit, E. Minimalistic peptide supramolecular co-assembly: expanding the conformational space for nanotechnology. Chem. Soc. Rev. 47, 3406–3420 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Adler-Abramovich, L. et al. Phenylalanine assembly into toxic fibrils suggests amyloid etiology in phenylketonuria. Nat. Chem. Biol. 8, 701–706 (2012).

    CAS  PubMed  Google Scholar 

  25. Mossou, E. et al. The self-assembling zwitterionic form of l-phenylalanine at neutral pH. Acta Crystallogr. C 70, 326–331 (2014).

    CAS  Google Scholar 

  26. Shaham-Niv, S., Adler-Abramovich, L., Schnaider, L. & Gazit, E. Extension of the generic amyloid hypothesis to nonproteinaceous metabolite assemblies. Sci. Adv. 1, e1500137 (2015).

    PubMed  PubMed Central  Google Scholar 

  27. Aizen, R., Tao, K., Rencus-Lazar, S. & Gazit, E. Functional metabolite assemblies—a review. J. Nanopart. Res. 20, 125 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. Eisenberg, D. & Jucker, M. The amyloid state of proteins in human diseases. Cell 148, 1188–1203 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Carny, O. & Gazit, E. A model for the role of short self-assembled peptides in the very early stages of the origin of life. FASEB J. 19, 1051–1055 (2005).

    CAS  PubMed  Google Scholar 

  30. Rout, S. K., Friedmann, M. P., Riek, R. & Greenwald, J. A prebiotic template-directed peptide synthesis based on amyloids. Nat. Commun. 9, 234 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. Greenwald, J. & Riek, R. On the possible amyloid origin of protein folds. J. Mol. Biol. 421, 417–426 (2012).

    CAS  PubMed  Google Scholar 

  32. Omosun, T. O. et al. Catalytic diversity in self-propagating peptide assemblies. Nat. Chem. 9, 805–809 (2017).

    CAS  PubMed  Google Scholar 

  33. Zozulia, O., Dolan, M. A. & Korendovych, I. V. Catalytic peptide assemblies. Chem. Soc. Rev. 47, 3621–3639 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Singh, N., Kumar, M., Miravet, J. F., Ulijn, R. V. & Escuder, B. Peptide-based molecular hydrogels as supramolecular protein mimics. Chem. Eur. J. 23, 981–993 (2017).

    PubMed  Google Scholar 

  35. Greenwald, J., Kwiatkowski, W. & Riek, R. Peptide amyloids in the origin of life. J. Mol. Biol. 430, 3735–3750 (2018).

    CAS  PubMed  Google Scholar 

  36. Elius Hossain, M., Mahmudul Hasan, M., Halim, M. E., Ehsan, M. Q. & Halim, M. A. Interaction between transition metals and phenylalanine: a combined experimental and computational study. Spectrochim. Acta A 138, 499–508 (2015).

    CAS  Google Scholar 

  37. Makin, O. S., Atkins, E., Sikorski, P., Johansson, J. & Serpell, L. C. Molecular basis for amyloid fibril formation and stability. Proc. Natl Acad. Sci. USA 102, 315–320 (2005).

    CAS  PubMed  Google Scholar 

  38. Riek, R. & Eisenberg, D. S. The activities of amyloids from a structural perspective. Nature 539, 227–235 (2016).

    PubMed  Google Scholar 

  39. Konar, S. et al. Structural determination and characterization of copper and zinc bis-glycinates with X-ray crystallography and mass spectrometry. J. Coord. Chem. 63, 3335–3347 (2010).

    CAS  Google Scholar 

  40. Song, R. et al. Principles governing catalytic activity of self-assembled short peptides. J. Am. Chem. Soc. 141, 223–231 (2019).

    CAS  PubMed  Google Scholar 

  41. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    CAS  PubMed  Google Scholar 

  42. Sheldrick, G. M. SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    Google Scholar 

  43. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    CAS  PubMed  Google Scholar 

  44. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    CAS  PubMed  Google Scholar 

  45. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS  PubMed  Google Scholar 

  46. Verpoorte, J. A., Mehta, S. & Edsall, J. T. Esterase activities of human carbonic anhydrases B and C. J. Biol. Chem. 242, 4221–4229 (1967).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a grant from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (BISON, Advanced ERC grant, no. 694426) (to E.G.). P.M. gratefully acknowledges the Center for Nanoscience and Nanotechnology of Tel Aviv University for a postdoctoral fellowship, C. M. Dobson, University of Cambridge, and B. Rosen, Tel Aviv University, for stimulating discussions. S.S.R.K.C.Y. and B.M.W. acknowledge the support of the US Army Research Office under grant no. W911NF-17-1-0340 and the National Science Foundation for the use of supercomputing resources through the Extreme Science and Engineering Discovery Environment (XSEDE), project no. TG-ENG160024. D.S.E and M.R.S. acknowledge the Northeastern Collaborative Access Team beamline 24-ID-C, which is funded by the National Institute of General Medical Sciences from the National Institutes of Health (grant no. P41 GM103403) and uses resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility, operated under contract no. DE-AC02-06CH11357. The Pilatus 6M detector is funded by an NIH-ORIP HEI grant (no. S10 RR029205). We also thank S. Rencus-Lazar for linguistic editing and all the members of the Gazit laboratories for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

P.M. and E.G. conceived and designed the experiments. P.M. grew the single crystals of catalytic complex and performed all experiments. P.M. and K.T. conducted the Fourier transform infrared and scanning electron microscopy measurements. D.S.E., M.R.S. and L.J.W.S. collected the single-crystal diffraction data and solved the crystal structure. S.S.R.K.C.Y. and B.M.W. performed the computational studies. P.M. and E.G. wrote and edited the manuscript. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Ehud Gazit.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Tables 1–3, Figs. 1–17, discussion and references

Supplementary Dataset 1

Atomic coordinates of the optimized computational models.

Supplementary Video 1

F–Zn(ii) crystallization. In-situ optical microscopy observation of phenylalanine-coordinated zinc ions (F–Zn(ii)) crystallization kinetics. The video was recorded at every 1-s interval.

Supplementary Video 2

Esterase activity. Real-time monitoring of pNPA hydrolysis in the presence and absence of F–Zn(ii) catalyst.

Supplementary Video 3

In-situ esterase activity. In-situ optical microscopy experiment describing the effective esterase activity of F–Zn(ii) crystals in water. The video was recorded at every 5-s interval. The change in reaction solution colour with time indicating the formation of chromogenic hydrolysed product pNP.

Compound F-Zn(II)

Crystallographic data of compound F-Zn(ii).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makam, P., Yamijala, S.S.R.K.C., Tao, K. et al. Non-proteinaceous hydrolase comprised of a phenylalanine metallo-supramolecular amyloid-like structure. Nat Catal 2, 977–985 (2019). https://doi.org/10.1038/s41929-019-0348-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0348-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research