Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Efficient reductive desymmetrization of bulky 1,3-cyclodiketones enabled by structure-guided directed evolution of a carbonyl reductase


Reductive desymmetrization of 2,2-disubstituted prochiral 1,3-cyclodiketones to 2,2-disubstituted-3-hydroxycycloketones is a highly desired transformation for the construction of complex molecules with multiple chiral centres, but the generation of a single stereoisomer is difficult and an extremely challenging task in organic chemistry. In this study, by using ethyl secodione as the model substrate and an engineered carbonyl reductase from Ralstonia sp. as the biocatalyst, we realized the efficient reductive desymmetrization of 2,2-disubstituted cyclodiketones to give essentially one single stereoisomer. The mutant enzyme F12 (I91V/I187S/I188L/Q191N/F205A) showed an 183-fold enhancement of enzyme activity and outstanding stereoselectivity towards most of the tested prochiral 1,3-cyclodiketones. Crystal structural analysis and molecular dynamics studies reveal the molecular basis for activity improvement and the stereoselectivity control mechanism. Our results show that by altering the active site conformation populations (particularly the position of an α-helix) to properly accommodate the larger substrate and co-factor for catalysis, this challenging synthetic problem can ultimately be addressed.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Reductive desymmetrization of 2,2-disubstituted-1,3-cyclodiones.
Fig. 2: Docking of 1a into the substrate binding site of RasADH.
Fig. 3: Crystal structures of wild-type and mutant F12.
Fig. 4: Conformational population analyses.
Fig. 5: Comparison of molecular dynamics data and the crystal structure.

Data availability

Crystallographic data of this study has been deposited in the PDB under accession codes 6IHI and 6IHH. The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Zeng, X. P., Cao, Z. Y., Wang, Y. H., Zhou, F. & Zhou, J. Catalytic enantioselective desymmetrization reactions to all-carbon quaternary stereocenters. Chem. Rev. 116, 7330–7396 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Bressy, C., Merad, J., Candy, M. & Pons, J.-M. Catalytic enantioselective desymmetrization of compounds in total synthesis of natural products: towards an economy of chiral reagents. Synthesis 49, 1938–1954 (2017).

    Article  Google Scholar 

  3. 3.

    Paul, C. E., Lavandera, I., Gotor-Fernández, V., Kroutil, W. & Gotor, V. Escherichia coli/ADH-A: an all-inclusive catalyst for the selective biooxidation and deracemisation of secondary alcohols. ChemCatChem 5, 3875–3881 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Díaz-Rodríguez, A., Iglesias-Fernández, J., Rovira, C. & Gotor-Fernández, V. Enantioselective preparation of δ-valerolactones with horse liver alcohol dehydrogenase. ChemCatChem 6, 977–980 (2014).

    Article  Google Scholar 

  5. 5.

    Skoupi, M., Vaxelaire, C., Strohmann, C., Christmann, M. & Niemeyer, C. M. Enantiogroup-differentiating biocatalytic reductions of prochiral Cs-symmetrical dicarbonyl compounds to meso Compounds. Chem. Eur. J. 21, 8701–8705 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Holec, C., Neufeld, K. & Pietruszka, J. P450 BM3 Monooxygenase as an efficient NAD(P)H-oxidase for regeneration of nicotinamide cofactors in ADH-catalysed preparative scale biotransformations. Adv. Synth. Catal. 358, 1810–1819 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Applegate, G. A. & Berkowitz, D. B. Exploiting enzymatic dynamic reductive kinetic resolution (DYRKR) in stereocontrolled synthesis. Adv. Synth. Catal. 357, 1619–1632 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Friest, J. A., Maezato, Y. & Berkowitz, D. B. Use of a robust dehydrogenase from an archael hyperthermophile in asymmetric catalysis–dynamic reductive kinetic resolution entry into (S)-profens. J. Am. Chem. Soc. 132, 5930–5931 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    Yeung, Y.-Y., Chein, R.-J. & Corey, E. J. Conversion of Torgov’s synthesis of estrone into a highly enantioselective and efficient process. J. Am. Chem. Soc. 129, 10346–10347 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    Yanai, M., Sugai, T. & Mori, K. Synthesis of (S)-2-hydroxy-β-ionone, employing (S)-3-hydroxy-2,2-dimethylcyclohexanone as the chiral starting material. Agric. Biol. Chem. 49, 2373–2377 (2014).

    Google Scholar 

  11. 11.

    Wei, Z.-L., Li, Z.-Y. & Lin, G.-Q. Baker’s yeast mediated mono-reduction of 1,3-cyclohexanediones bearing two identical C(2) substituents. Tetrahedron: Asymmetry 12, 229–233 (2001).

    CAS  Article  Google Scholar 

  12. 12.

    Mori, K. & Mori, H. Synthesis of (1S, 5R)-Karahana ether and (1S, 5R)-Karahana lactone. The optical active forms of unique monoterpenen with a 6-Oxabicyclo[3,2,1]octane ring system. Tetrahedron 41, 5487–5493 (1985).

    CAS  Article  Google Scholar 

  13. 13.

    Ananchenko, S. N., Limanov, V. Y., Leonov, V. N., Rzheznikov, V. N. & Torgov, I. V. Synthesis of derivatives of oestrane and 19-norsteroids from 6-methoxytetralone and 6-hydroxytertralone. Tetrahedron 18, 1355–1367 (1962).

    CAS  Article  Google Scholar 

  14. 14.

    Gibian, H. et al. Totalsynthese von natürlichem üstradiolmethylather. Tetrahedron Lett. 21, 2321–2330 (1966).

    Article  Google Scholar 

  15. 15.

    Brooks, D. W., Grothaus, P. G. & Irwin, W. L. Chiral cyclopentanoid synthetic intermediates via asymmetric microbial reduction of prochiral 2,2-disubstituted cyclopentanediones. J. Org. Chem. 47, 2820–2821 (1982).

    CAS  Article  Google Scholar 

  16. 16.

    Brooks, D. W. & Woods, K. W. Chiral building blocks for fused cyclopentanoids: enantioselective synthesis of 5-methylbicyclo[3.3.0]oct-l-ene-3,6-dione and derivatives. J. Org. Chem. 52, 2036–2039 (1987).

    CAS  Article  Google Scholar 

  17. 17.

    Murai, A., Tanimoto, N., Sakamoto, N. & Masamune, T. Total synthesis of glycinoeclepin A. J. Am. Chem. Soc. 110, 1985–1986 (1988).

    CAS  Article  Google Scholar 

  18. 18.

    Thornton, P. D. & Burnell, D. J. A Pauson–Khand and ring-expansion approach to the aquariane ring system. Org. Lett. 8, 3195–3198 (2006).

    CAS  Article  Google Scholar 

  19. 19.

    Chapelon, A.-S., Moraléda, D., Rodriguez, R., Ollivier, C. & Santelli, M. Enantioselective synthesis of steroids. Tetrahedron 63, 11511–11616 (2007).

    CAS  Article  Google Scholar 

  20. 20.

    Breitler, S. & Carreira, E. M. Total synthesis of (+)-crotogoudin. Angew. Chem. Int. Ed. Engl. 52, 11168–11171 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    Contente, M. L., Molinari, F., Serra, I., Pinto, A. & Romano, D. Stereoselective enzymatic reduction of ethyl secodione: preparation of a key intermediate for the total synthesis of steroids. Eur. J. Org. Chem. 2016, 1260–1263 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Butler, B., Schultz, T. & Simpkins, N. S. Chiral base mediated transformation of cyclic 1,3-diketones. Chem. Commun. 2006, 3634–3636 (2006).

    Article  Google Scholar 

  23. 23.

    Kosmol, H. et al. Mikrobiologische stereospezifische Reduktion von 3-Methoxy-8.14-seco-l.3.5(10) 9-ostratetraen-14.17-dion. Liebigs Ann. Chem. 701, 199–205 (1967).

    Article  Google Scholar 

  24. 24.

    Brooks, D. W., Mazdiyasni, H. & Chakrabarti, S. Chiral cyclohexanoid synthesis precursors via asymmetric microbial reduction of prochiral cyclohexandiones. Tetrahedron Lett. 25, 1241–1244 (1984).

    CAS  Article  Google Scholar 

  25. 25.

    Brooks, D. W., Mazdiyashi, H. & Sally, P. Microbial reduction of prochiral 2,2-disubstituted 1,3-cycloheptanediones. J. Org. Chem. 50, 3411–3414 (1985).

    CAS  Article  Google Scholar 

  26. 26.

    Brooks, D. W., Mazdiyasni, H. & Grothaust, P. G. Asymmetric microbial reduction of prochiral 2,2-disubstituted cycloalkanediones. J. Org. Chem. 52, 3232–3239 (1987).

    Article  Google Scholar 

  27. 27.

    Zhou, W.-S., Huang, D.-Z., Dong, Q.-C. & Wang, Z.-Q. Asymmetrical reduction of the symmetrical diketongs by micro-organism. Acta Chim. Sin. 40, 648–656 (1982).

    CAS  Google Scholar 

  28. 28.

    Dall′Oglio, F. et al. Flow-based stereoselective reduction of ketones using an immobilized ketoreductase/glucose dehydrogenasemixed bed system. Catal. Commun. 93, 29–32 (2017).

    Article  Google Scholar 

  29. 29.

    Ema, T., Yagasaki, H., Okita, N., Takeda, M. & Sakai, T. Asymmetric reduction of ketones using recombinant E. coli cells that produce a versatile carbonyl reductase with high enantioselectivity and broad substrate specificity. Tetrahedron 62, 6143–6149 (2006).

    CAS  Article  Google Scholar 

  30. 30.

    Peretz, M. et al. Molecular cloning, nucleotide sequecing, and expression of genes encoding alcohol dehydrogenase from the thermophile Thermoanaerobacter brockii and the meso phile Clostridium beijerinckii. Anaerobe 3, 259–270 (1997).

    CAS  Article  Google Scholar 

  31. 31.

    Lavandera, I. et al. Stereoselective bioreduction of bulky-bulky ketones by a novel ADH from Ralstonia sp. J. Org. Chem. 73, 6003–6005 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    Cuetos, A. et al. Access to enantiopure α-alkyl-β-hydroxy esters through dynamic kinetic resolutions employing purified/overexpressed alcohol dehydrogenases. Adv. Synth. Catal. 354, 1743–1749 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    Kulig, J. et al. Stereoselective synthesis of bulky 1,2-diols with alcohol dehydrogenases. Catal. Sci. Technol. 2, 1580–1589 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    Lerchner, A., Jarasch, A., Meining, W., Schiefner, A. & Skerra, A. Crystallographic analysis and structure-guided engineering of NADPH-dependent Ralstonia sp. alcohol dehydrogenase toward NADH cosubstrate specificity. Biotechnol. Bioeng. 110, 2803–2814 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    Man, H. et al. Structures of alcohol dehydrogenases from Ralstonia and Sphingobium spp. Reveal the molecular basis for their recognition of ‘Bulky–Bulky’ ketones. Top. Catal. 57, 356–365 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    Durrant, J. D., Votapka, L., Sørensen, J. & Amaro, R. E. POVME 2.0: an enhanced tool for determining pocket shape and volume characteristics. J. Chem. Theory Comput. 10, 5047–5056 (2014).

    CAS  Article  Google Scholar 

  37. 37.

    Trott, O. & Olson, A. J. Software news and update autoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Maria-Solano, M. A., Romero-Rivera, A. & Osuna, S. Exploring the reversal of enantioselectivity on a zinc-dependent alcohol dehydrogenase. Org. Biomol. Chem. 15, 4122–4129 (2017).

    CAS  Article  Google Scholar 

  39. 39.

    Li, G., Maria-Solano, M. A., Romero-Rivera, A., Osuna, S. & Reetz, M. Inducing high activity of a thermophilic enzyme at ambient temperatures by directed evolution. Chem. Commun. 53, 9454–9457 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Maria-Solano, M. A., Serrano-Hervás, E., Romero-Rivera, A., Iglesias-Fernández, J. & Osuna, S. Role of conformational dynamics in the evolution of novel enzyme function. Chem. Commun. 54, 6622–6634 (2018).

    CAS  Article  Google Scholar 

  41. 41.

    Takhashi, H., Ishida-Yamanoto, A. & Iizuka, H. Effects of bepotastine, cetirizine, fexofenadine, and olopatadine on histamine-induced wheal-and flare-response, sedation, and psychomotor performance. Clin. Exp. Dermatol. 29, 526–532 (2004).

    Article  Google Scholar 

  42. 42.

    Gora, A., Brezovsky, J. & Damborsky, J. Gates of enzymes. Chem. Rev. 113, 5871–5923 (2013).

    CAS  Article  Google Scholar 

  43. 43.

    Kreß, N., Halder, J. M., Rapp, L. R. & Hauer, B. Unlocked potential of dynamic elements in protein structures: channels and loops. Curr. Opin. Chem. Biol. 47, 109–116 (2018).

    Article  Google Scholar 

  44. 44.

    Davey, J. A., Damry, A. M., Goto, N. K. & Chica, R. A. Rational design of proteins that exchange on functional timescales. Nat. Chem. Biol. 13, 1280–1285 (2017).

    CAS  Article  Google Scholar 

  45. 45.

    Romero-Rivera, A., Garcia-Borràs, M. & Osuna, S. Role of conformational dynamics in the evolution of retro-aldolase activity. ACS catal. 7, 8524–8532 (2017).

    CAS  Article  Google Scholar 

  46. 46.

    Zhu, D., Malik, H. T. & Hua, L. Asymmetric ketone reduction by a hyperthermophilic alcohol dehydrogenase. The substrate specificity, enantioselectivity and tolerance of organic solvents. Tetrahedron: Asymmetry 17, 3010–3014 (2006).

    CAS  Article  Google Scholar 

  47. 47.

    Kaluzna, I. A., Matsuda, T., Sewell, A. K. & Stewart, J. D. Systematic investigation of Saccharomyces cerevisiae enzymes catalyzing carbonyl reductions. J. Am. Chem. Soc. 126, 12827–12832 (2004).

    CAS  Article  Google Scholar 

  48. 48.

    Liang, J. et al. Ketoreductase polypeptides and uses thereof. US patent no. WO2009042984A1 (2009).

  49. 49.

    Edegger, K. et al. Biocatalytic deuterium- and hydrogen-transfer using over-expressed ADH-‘A’: enhanced stereoselectivity and 2H-labeled chiral alcohols. Chem. Commun. 2006, 2402–2404 (2006).

    Article  Google Scholar 

  50. 50.

    Kita, K. et al. Cloning, overexpression, and mutagenesis of the Sporobolomyces salmonicolor Aku4429 gene encoding a new aldehyde reductase, which catalyzes the stereoselective reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (S)-4-chloro-3-hydroxybutanoate. Appl. Environ. Microbiol. 65, 5207–5211 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Lampel, K. A., Uratani, B., Chaudhry, G. R., Ramaley, R. F. & Rudikoff, S. Characterization of the developmentally regulated Bacillus subtilis gluocose dehydrogenase gene. J. Bacteriol. 166, 238–243 (1986).

    CAS  Article  Google Scholar 

  52. 52.

    Braga, A. L., Paixão, M. W., Westermann, B., Schneider, P. H. & Wessjohann, L. A. Acceleration of arylzinc formation and its enantioselective addition to aldehydes by microwave irradiation and aziridine-2-methanol catalysts. J. Org. Chem. 73, 2879–2882 (2008).

    CAS  Article  Google Scholar 

  53. 53.

    Yang, Y.-X. et al. Aryl bromides as inexpensive starting materials in the catalytic enantioselective arylation of aryl aldehydes: the additive TMEDA enhances the enantioselectivity. J. Org. Chem. 79, 10696–10702 (2014).

    CAS  Article  Google Scholar 

  54. 54.

    Discovery Studio V4.1 (Dassault Systèmes BIOVIA).

  55. 55.

    The PyMOL Molecular Graphics System, Version v1.8.2.3 (Schrödinger LLC).

  56. 56.

    Case, D. A. et al. AMBER v.16 (University of California, San Francisco, 2016).

  57. 57.

    Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).

    CAS  Article  Google Scholar 

  58. 58.

    Bayly, C. I., Cieplak, P., Cornell, W. & Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269–10280 (1993).

    CAS  Article  Google Scholar 

  59. 59.

    Singh, U. C. & Kollman, P. A. An approach to computing electrostatic charges for molecules. J. Comput. Chem. 5, 129–145 (1984).

    CAS  Article  Google Scholar 

  60. 60.

    Besler, B. H., Merz, K. M. & Kollman, P. A. Atomic charges derived from semiempirical methods. J. Comput. Chem. 11, 431–439 (1990).

    CAS  Article  Google Scholar 

  61. 61.

    Frisch, M. J. et al. Gaussian 09, Revision A.02 (Gaussian, 2009).

  62. 62.

    Anandakrishnan, R., Aguilar, B. & Onufriev, A. V. H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res. 40, W537–W541 (2012).

    CAS  Article  Google Scholar 

  63. 63.

    Ryde, U. On the role of Glu-68 in alcohol dehydrogenase. Protein Sci. 4, 1124–1132 (1995).

    CAS  Article  Google Scholar 

  64. 64.

    Ryde, U. Molecular dynamics simulations of alcohol dehydrogenase with a four- or five-coordinate catalytic zinc ion. Proteins 21, 40–56 (1995).

    CAS  Article  Google Scholar 

  65. 65.

    Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    CAS  Article  Google Scholar 

  66. 66.

    Hornak, V. et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65, 712–725 (2006).

    CAS  Article  Google Scholar 

  67. 67.

    Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    CAS  Article  Google Scholar 

Download references


We would like to thank L. Pu of the Department of Chemistry, University of Virginia for the helpful discussions about the chirality of the products. This work was financially supported by the National Key R&D Program of China (no. 2018YFA0901600), National Natural Science Foundation of China (no. 21602246) and Tianjin Municipal Science and Technology Commission (nos 15PTGCCX00060 and 15PTCYSY00020). M.A.M.S. is grateful to the Spanish MINECO for a PhD fellowship (BES-2015-074964). S.O. thanks the funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC-2015-StG-679001) and the Spanish MINECO for I+D project PGC2018-102192-B-I00. M.A.M.S. and S.O. thank the Generalitat de Catalunya for the group-emergent CompBioLab (2017 SGR-1707).

Author information




X.C., H.Z., Q.W., Y.M. and D.Z. conceived and designed the project. X.C. synthesized the compounds, purified the products and analysed the chirality of all of the products. H.Z. designed and performed the mutation, screening and growing crystal experiments. M.A.M.-S. performed the molecular dynamics simulations. J.L. performed the HPLC analyses. W.L. and R.-T.G. collected crystallographic data and solved all of the structures. J.F. carried the docking experiments. X.L. optimized the fermentation conditions. X.C., H.Z., M.A.M.-S., S.O., Q.W. and D.Z. wrote the manuscript. S.O., Q.W., Y.M and D.Z. directed the project.

Corresponding authors

Correspondence to Sílvia Osuna, Qiaqing Wu or Dunming Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–4, Figs. 1–28 and References

Reporting Summary

Supplementary Data 1


Supplementary Data 2


Supplementary Data 3


Supplementary Data 4


Supplementary Data 5


Supplementary Data 6


Supplementary Data 7


Supplementary Data 8


Supplementary Data 9


Supplementary Data 10


Supplementary Data 11


Supplementary Data 12


Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhang, H., Maria-Solano, M.A. et al. Efficient reductive desymmetrization of bulky 1,3-cyclodiketones enabled by structure-guided directed evolution of a carbonyl reductase. Nat Catal 2, 931–941 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing