Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atroposelective synthesis of tetra-ortho-substituted biaryls by catalyst-controlled non-canonical polyketide cyclizations

Abstract

The cyclization of poly-β-carbonyl-substrates controlled by polyketide synthases intricately governs the biosynthesis of a wide range of aromatic polyketides. Analogous small-molecule-catalysed processes would conceivably induce selective cyclizations of non-canonical polycarbonyl substrates to provide products distinct from natural polyketides. Here, we report a secondary amine-catalysed twofold cyclization of non-canonical hexacarbonyl substrates, furnishing enantioenriched tetra-ortho-substituted binaphthalenes. The substrates were prepared by a fourfold ozonolysis of dicinnamyl biindenes and converted under catalyst control with high atroposelectivity. Privileged catalysts, helicenes and ligands are readily accessible from the binaphthalene products stemming from the non-canonical polyketide cyclizations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biosynthesis of aromatic polyketides and catalytic non-canonical polyketide cyclization.
Fig. 2: The preparation of substrates.
Fig. 3: Conditions for the synthesis of a chiral diene ligand, the Maruoka ion-pairing catalyst and a [5]helicene.

Similar content being viewed by others

Data availability

The synthetic procedures and characterization data are available in the Supplementary Information. Crystallographic data have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under nos. 1856452 (for (Ra)-4a prepared with (R)-6a, reflection shown in Table 2), 1856453 (for (Sa)-4c) and 1856454 (for (Sa)-4e) and can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/getstructures. All other data are available from the authors upon reasonable request.

References

  1. Hertweck, C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. 48, 4688–4716 (2009).

    Article  CAS  Google Scholar 

  2. Crawford, J. M. & Townsend, C. A. New insights into the formation of fungal aromatic polyketides. Nat. Rev. Microbiol. 8, 879–889 (2010).

    Article  CAS  Google Scholar 

  3. Das, A. & Koshla, C. Biosynthesis of aromatic polyketides in bacteria. Acc. Chem. Res. 42, 631–639 (2009).

    Article  CAS  Google Scholar 

  4. Aldemir, H., Richarz, R. & Gulder, T. A. M. The biocatalytic repertoire of natural biaryl formation. Angew. Chem. Int. Ed. 53, 8286–8293 (2014).

    Article  CAS  Google Scholar 

  5. Mazzaferro, L. S., Hüttel, W., Fries, A. & Müller, M. Cytochrome P450-catalyzed regio- and stereoselective phenol coupling of fungal natural products. J. Am. Chem. Soc. 137, 12289–12295 (2015).

    Article  CAS  Google Scholar 

  6. Skrobo, B., Rolfes, J. D. & Deska, J. Enzymatic approaches for the preparation of optically active non-centrochiral compounds. Tetrahedron 72, 1257–1275 (2016).

    Article  CAS  Google Scholar 

  7. Kozlowski, M. C., Morgan, B. J. & Linton, E. C. Total synthesis of chiral biaryl natural products by asymmetric biaryl coupling. Chem. Soc. Rev. 38, 3193–3207 (2009).

    Article  CAS  Google Scholar 

  8. Bringmann, G., Gulder, T., Gulder, T. A. M. & Breuning, M. Atroposelective total synthesis of axially chiral biaryl natural products. Chem. Rev. 111, 563–639 (2011).

    Article  CAS  Google Scholar 

  9. Liu, B., Beuerle, T., Klundt, T. & Beerhues, L. Biphenyl synthase from yeast-extract-treated cell cultures of Sorbus aucuparia. Planta 218, 492–496 (2004).

    Article  CAS  Google Scholar 

  10. Feng, Z., Kallifidas, D. & Brady, S. F. Functional analysis of environmental DNA-derived type II polyketide synthases reveals structurally diverse secondary metabolites. Proc. Natl Acad. Sci. USA 108, 12629–12634 (2011).

    Article  CAS  Google Scholar 

  11. Qin, Z. et al. Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants. Chem. Sci. 8, 3218–3227 (2017).

    Article  CAS  Google Scholar 

  12. Franke, J., Ishida, K. & Hertweck, C. Genomics-driven discovery of burkholderic acid, a noncanonical, cryptic polyketide from human pathogenic Burkholderia species. Angew. Chem. Int. Ed. 51, 11611–11615 (2012).

    Article  CAS  Google Scholar 

  13. Harris, T. M. & Harris, C. M. Synthesis of polyketide-type aromatic natural products by biogenetically modeled routes. Tetrahedron 33, 2159–2185 (1977).

    Article  CAS  Google Scholar 

  14. Yamaguchi, M., Okuma, T., Horiguchi, A., Ikeura, C. & Minami, T. Total synthesis of (−)-urdamycinone B through polyketide condensation. J. Org. Chem. 57, 1647–1649 (1992).

    Article  CAS  Google Scholar 

  15. Krohn, K. Biomimetic synthesis of deca- and dodecaketide-derived quinone antibiotics. Eur. J. Org. Chem. 2002, 1351–1362 (2002).

    Article  Google Scholar 

  16. Cookson, R., Barrett, T. N. & Barrett, A. G. M. β‑keto-dioxinones and β,δ-diketo-dioxinones in biomimetic resorcylate total synthesis. Acc. Chem. Res. 48, 628–642 (2015).

    Article  CAS  Google Scholar 

  17. Martínez, A., Fernández, M., Estévez, J. C., Estévez, R. J. & Castedo, L. Studies on the chemistry of 2-(2-oxo-3-phenylpropyl)-benzaldehydes: novel total synthesis of 3-phenylnaphthalen-2-ols and 2-hydroxy-3-phenyl-1,4-naphthoquinones. Tetrahedron 61, 485–492 (2005).

    Article  Google Scholar 

  18. Takikawa, H., Nishii, A. & Suzuki, K. Synthesis of β-hydroxynaphthoate derivatives from ketodioxinones via benzyne acyl-alkylation and aldol condensation cascade. Synthesis 48, 3331–3338 (2016).

    Article  CAS  Google Scholar 

  19. Link, A. & Sparr, C. Organocatalytic atroposelective aldol condensation: synthesis of axially chiral biaryls by arene formation. Angew. Chem. Int. Ed. 53, 5458–5461 (2014).

    Article  CAS  Google Scholar 

  20. Witzig, R. M., Lotter, D., Fäseke, V. C. & Sparr, C. Stereoselective arene‐forming aldol condensation: catalyst‐controlled synthesis of axially chiral compounds. Chem. Eur. J. 23, 12960–12966 (2017).

    Article  CAS  Google Scholar 

  21. Link, A. & Sparr, C. Stereoselective arene formation. Chem. Soc. Rev. 47, 3804–3815 (2018).

    Article  CAS  Google Scholar 

  22. Kočovsky, P., Vyskočil, Š. & Smrčina, M. Non-symmetrically substituted 1,1′-binaphthyls in enantioselective catalysis. Chem. Rev. 103, 3213–3246 (2003).

    Article  Google Scholar 

  23. Guo, F., Konkol, L. C. & Thomson, R. J. Enantioselective synthesis of biphenols from 1,4-diketones by traceless central-to-axial chirality exchange. J. Am. Chem. Soc. 133, 18–20 (2011).

    Article  CAS  Google Scholar 

  24. Jang, Y.-S., Woźniak, Ł., Pedroni, J. & Cramer, J. Access to P- and axially-chiral biaryl phosphine oxides by enantioselective CpXIrIII-catalyzed C–H arylations. Angew. Chem. Int. Ed. 57, 12901–12905 (2018).

    Article  CAS  Google Scholar 

  25. Tanaka, K. Transition‐metal‐catalyzed enantioselective [2+2+2] cycloadditions for the synthesis of axially chiral biaryls. Chem. Asian J. 4, 508–518 (2009).

    Article  CAS  Google Scholar 

  26. Hayashi, T., Hayashizaki, K., Kiyoi, T. & Ito, Y. Asymmetric synthesis catalyzed by chiral ferrocenylphosphine-transition-metal complexes. 6. Practical asymmetric synthesis of 1,1′-binaphthyls via asymmetric cross-coupling with a chiral [(alkoxyalkyl)ferrocenyl]monophosphine/nickel catalyst. J. Am. Chem. Soc. 110, 8153–8156 (1988).

    Article  CAS  Google Scholar 

  27. Parmar, D., Sugiono, E., Raja, S. & Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing and metal phosphates. Chem. Rev. 114, 9047–9153 (2014).

    Article  CAS  Google Scholar 

  28. Baldwin, J. E. & Lusch, M. J. Rules for ring closure: application to intramolecular aldol condensations in polyketonic substrates. Tetrahedron 38, 2939–2947 (1982).

    Article  CAS  Google Scholar 

  29. Pidathala, C., Hoang, L., Vignola, N. & List, B. Direct catalytic asymmetric Enolexo aldolizations. Angew. Chem. Int. Ed. 42, 2785–2788 (2003).

    Article  CAS  Google Scholar 

  30. Nicolet, P., Sanchez, J.-Y., Benaboura, A. & Abadie, M. J. M. Synthesis of 1,1′-biindenes and 3,3′-biindienes. Synthesis 2, 202–203 (1987).

    Article  Google Scholar 

  31. Bringmann, G. & Jansen, J. R. Einfache Synthesen nützlicher Diketo-Bausteine für biomimetische Isochinolin- und Naphthalin-Synthesen. Liebigs Ann. Chem. 11, 2116–2125 (1985).

    Article  Google Scholar 

  32. Kersten, L., Harms, K. & Hilt, G. Synthesis of tri‐, tetra‐ and pentacarbonyl derivatives via ozonolysis of 1,4-dienes and cyclization to polyaromatic systems. J. Org. Chem. 79, 11661–11673 (2014).

    Article  CAS  Google Scholar 

  33. Ooi, T. & Maruoka, K. Recent advances in asymmetric phase-transfer catalysis. Angew. Chem. Int. Ed. 46, 4222–4266 (2007).

    Article  CAS  Google Scholar 

  34. Lotter, D., Castrogiovanni, A., Neuburger, M. & Sparr, C. Catalyst-controlled stereodivergent synthesis of atropisomeric multiaxis systems. ACS Cent. Sci. 4, 656–660 (2018).

    Article  CAS  Google Scholar 

  35. Tang, Z. et al. Novel small organic molecules for a highly enantioselective direct aldol reaction. J. Am. Chem. Soc. 125, 5262–5263 (2003).

    Article  CAS  Google Scholar 

  36. Samanta, S., Liu, J., Dodda, R. & Zhao, C.-G. C2-symmetric bisprolinamide as a highly efficient catalyst for direct aldol reaction. Org. Lett. 7, 5321–5323 (2005).

    Article  CAS  Google Scholar 

  37. Miura, D. & Machinami, T. Stereoselective aldol reaction in aqueous solution using prolinamido-glycosides as water-compatible organocatalyst. Mod. Res. Catal. 4, 20–27 (2015).

    Article  Google Scholar 

  38. Tanimori, S., Naka, T. & Kirihata, M. Synthesis of a new proline‐derived organic catalyst and its evaluation for direct aldol reaction. Synth. Commun. 34, 4043–4048 (2004).

    Article  CAS  Google Scholar 

  39. Chen, Y., Yekta, S. & Yudin, A. K. Modified BINOL ligands in asymmetric catalysis. Chem. Rev. 103, 3155–3212 (2003).

    Article  CAS  Google Scholar 

  40. Liu, Y. & Du, H. Chiral dienes as ‘ligands’ for borane-catalyzed metal-free asymmetric hydrogenation of imines. J. Am. Chem. Soc. 135, 6810–6813 (2013).

    Article  CAS  Google Scholar 

  41. Cao, Z. & Du, H. Development of binaphthyl-based chiral dienes for rhodium(i)-catalyzed asymmetric arylation of N,N-dimethylsulfamoyl-protected aldimines. Org. Lett. 12, 2602–2605 (2010).

    Article  CAS  Google Scholar 

  42. Kitamura, M., Arimura, Y., Shirakawa, S. & Maruoka, K. Combinatorial approach for the design of new, simplified chiral phase-transfer catalysts with high catalytic performance for practical asymmetric synthesis of α-alkyl-α-amino acids. Tetrahedron Lett. 49, 2026–2030 (2008).

    Article  CAS  Google Scholar 

  43. Shirakawa, S. & Maruoka, K. Recent developments in asymmetric phase-transfer reactions. Angew. Chem. Int. Ed. 52, 4312–4348 (2013).

    Article  CAS  Google Scholar 

  44. Ravat, P. et al. Configurational stability of [5]helicenes. Org. Lett. 19, 3707–3710 (2017).

    Article  CAS  Google Scholar 

  45. Šámal, M. et al. An ultimate stereocontrol in asymmetric synthesis of optically pure fully aromatic helicenes. J. Am. Chem. Soc. 137, 8469–8474 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Swiss National Science Foundation (BSSGI0-155902/1), the University of Basel and the NCCR Molecular Systems Engineering and thank F. Zellweger and F. Bianchi for skilful technical work, T. Müntener for NMR assistance and M. Neuburger for X-ray crystallography.

Author information

Authors and Affiliations

Authors

Contributions

R.M.W. developed the substrate synthesis and identified the aldolization modes. R.M.W. and V.C.F. optimized the described synthetic method. R.M.W. investigated the scope. R.M.W. and V.C.F. synthesized the ligand, helicene and catalyst. D.H. investigated the substrate tautomerism and mechanism by NMR. C.S. conceived and supervised the project. All authors contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Christof Sparr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Supplementary Table 1, Supplementary Fig. 1 and Supplementary references

Compound (Ra)-4a

Crystallographic data for compound (Ra)-4a

Compound (Sa)-4c

Crystallographic data for compound (Sa)-4c

Compound (Sa)-4e

Crystallographic data for compound (Sa)-4e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Witzig, R.M., Fäseke, V.C., Häussinger, D. et al. Atroposelective synthesis of tetra-ortho-substituted biaryls by catalyst-controlled non-canonical polyketide cyclizations. Nat Catal 2, 925–930 (2019). https://doi.org/10.1038/s41929-019-0345-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0345-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing