Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Catalyst deactivation via decomposition into single atoms and the role of metal loading

Abstract

In the high-temperature environments needed to perform catalytic processes, supported precious metal catalysts lose their activity severely over time. Generally, loss of catalytic activity is attributed to nanoparticle sintering or processes by which larger particles grow at the expense of smaller ones. Here, by independently controlling particle size and particle loading using colloidal nanocrystals, we reveal the opposite process as an alternative deactivation mechanism: nanoparticles rapidly lose activity for methane oxidation by high-temperature decomposition into inactive single atoms. This deactivation route is remarkably fast, leading to severe loss of activity in as little as 10 min. Importantly, this deactivation pathway is strongly dependent on particle density and the concentration of support defect sites. A quantitative statistical model explains how, for certain reactions, higher particle densities can lead to more stable catalysts.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Effect of different Pd nanoparticle densities on catalytic stability.
Fig. 2: Particle density-dependent conversion of Pd nanoparticles into Pd single atoms.
Fig. 3: Interface-limited atomic emission demonstrated by nanoparticle size control.
Fig. 4: Conditions of catalyst decomposition.
Fig. 5: Statistical mechanics model of density-dependent particle decomposition.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Argyle, M. D. & Bartholomew, C. H. Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5, 145–269 (2015).

    Article  CAS  Google Scholar 

  2. Bartholomew, C. H. Mechanisms of catalyst deactivation. Appl. Catal. A 212, 17–60 (2001).

    Article  CAS  Google Scholar 

  3. Tollefson, J. Worth its weight in platinum. Nature 450, 334–335 (2007).

    Article  CAS  Google Scholar 

  4. Robert, J. Farrauto Low-temperature oxidation of methane. Science 337, 659–661 (2012).

    Article  Google Scholar 

  5. Liu, J., Ji, Q., Imai, T., Ariga, K. & Abe, H. Sintering-resistant nanoparticles in wide-mouthed compartments for sustained catalytic performance. Sci. Rep. 7, 41773 (2017).

    Article  CAS  Google Scholar 

  6. Prieto, G., Zecevic, J., Friedrich, H., de Jong, K. & de Jongh, P. Towards stable catalysts by controlling collective properties of supported metal nanoparticle. Nat. Mater. 12, 34–39 (2013).

    Article  CAS  Google Scholar 

  7. Prieto, G., Meeldijk, J. D., de Jong, K. P. & de Jongh, P. E. Interplay between pore size and nanoparticle spatial distribution: consequences for the stability of CuZn/SiO2 methanol synthesis catalysts. J. Catal. 303, 31–40 (2013).

    Article  CAS  Google Scholar 

  8. Goodman, E. D., Schwalbe, J. A. & Cargnello, M. Mechanistic understanding and the rational design of sinter-resistant heterogeneous catalysts. ACS Catal. 7, 7156–7173 (2017).

    Article  CAS  Google Scholar 

  9. Scott, S. L. A matter of life(time) and death. ACS Catal. 8, 8597–8599 (2018).

    Article  CAS  Google Scholar 

  10. Hansen, T. W., Delariva, A. T., Challa, S. R. & Datye, A. K. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Acc. Chem. Res. 46, 1720–1730 (2013).

    Article  CAS  Google Scholar 

  11. Cargnello, M. et al. Efficient removal of organic ligands from supported nanocrystals by fast thermal annealing enables catalytic studies on well-defined active phases. J. Am. Chem. Soc. 137, 6906–6911 (2015).

    Article  CAS  Google Scholar 

  12. Monai, M., Montini, T., Gorte, R. J. & Fornasiero, P. Catalytic oxidation of methane: Pd and beyond. Eur. J. Inorg. Chem. 2018, 2884–2893 (2018).

    Article  CAS  Google Scholar 

  13. Willis, J. J. et al. Systematic structure–property relationship studies in palladium-catalyzed methane complete combustion. ACS Catal. 7, 7810–7821 (2017).

    Article  CAS  Google Scholar 

  14. Zhu, G., Han, J., Zemlyanov, D. Y. & Ribeiro, F. H. The turnover rate for the catalytic combustion of methane over palladium is not sensitive to the structure of the catalyst. J. Am. Chem. Soc. 126, 9896–9897 (2004).

    Article  CAS  Google Scholar 

  15. Schwartz, W. R. & Pfefferle, L. D. Combustion of methane over palladium-based catalysts: support interactions. J. Phys. Chem. C 116, 8571–8578 (2012).

    Article  CAS  Google Scholar 

  16. Otto, K., Haack, L. P. & DeVries, J. E. Identification of two types of oxidized palladium on γ-alumina by X-ray photoelectron spectroscopy. Appl. Catal. B Environ. 1, 1–12 (1992).

    Article  CAS  Google Scholar 

  17. Datye, A. K., Xu, Q., Kharas, K. C. & Mccarty, J. M. Particle size distributions in heterogeneous catalysts: what do they tell us about the sintering mechanism? Catal. Today 111, 59–67 (2006).

    Article  CAS  Google Scholar 

  18. Kwak, J. H., Hu, J., Mei, D., Yi, C. & Kim, D. H. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 325, 1670–1673 (2009).

    Article  CAS  Google Scholar 

  19. Zhang, Z. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 8, 16100 (2017).

    Article  CAS  Google Scholar 

  20. Newton, M. A., Belver-Coldeira, C., Martínez-Arias, A. & Fernández-García, M. Dynamic in situ observation of rapid size and shape change of supported Pd nanoparticles during CO/NO cycling. Nat. Mater. 6, 528–532 (2007).

    Article  CAS  Google Scholar 

  21. Peterson, E. J. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 5, 4885 (2014).

    Article  CAS  Google Scholar 

  22. Challa, S. R. et al. Relating rates of catalyst sintering to the disappearance of individual nanoparticles during Ostwald ripening. J. Am. Chem. Soc. 133, 20672–20675 (2011).

    Article  CAS  Google Scholar 

  23. Campbell, C. T., Parker, S. C. & Starr, D. E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298, 811–814 (2002).

    Article  CAS  Google Scholar 

  24. Huang, W., Goodman, E. D., Losch, P. & Cargnello, M. Deconvoluting transient water effects on the activity of Pd methane combustion catalysts. Ind. Eng. Chem. Res. 57, 10261–10268 (2018).

    Article  CAS  Google Scholar 

  25. Schwartz, W. R., Ciuparu, D. & Pfefferle, L. D. Combustion of methane over palladium-based catalysts: catalytic deactivation and role of the support. J. Phys. Chem. C 116, 8587–8593 (2012).

    Article  CAS  Google Scholar 

  26. Wischert, R., Laurent, P., Copéret, C., Delbecq, F. & Sautet, P. γ-Alumina: the essential and unexpected role of water for the structure, stability and reactivity of ‘defect’ sites. J. Am. Chem. Soc. 134, 14430–14449 (2012).

    Article  CAS  Google Scholar 

  27. Ouyang, R., Liu, J. & Li, W. Atomistic theory of ostwald ripening and disintegration of supported metal particles under reaction conditions. J. Am. Chem. Soc. 135, 1760–1771 (2013).

    Article  CAS  Google Scholar 

  28. Parker, S. C. & Campbell, C. T. Kinetic model for sintering of supported metal particles with improved size-dependent energetics and applications to Au on TiO2 (110). Phys. Rev. B 75, 035430 (2007).

    Article  Google Scholar 

  29. Bruix, A. et al. Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum. Angew. Chem. Int. Ed. 53, 10525–10530 (2014).

    Article  CAS  Google Scholar 

  30. Wu, L. et al. Tuning precursor reactivity toward nanometer-size control in palladium nanoparticles studied by in situ small angle X-ray scattering. Chem. Mater. 30, 1127–1135 (2018).

    Article  CAS  Google Scholar 

  31. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  Google Scholar 

  32. Hu, C. H. et al. Modulation of catalyst particle structure upon support hydroxylation: ab initio insights into Pd13 and Pt13/γ-Al2O3. J. Catal. 274, 99–110 (2010).

    Article  CAS  Google Scholar 

  33. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  34. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  35. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  36. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  37. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  38. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  39. Digne, M., Sautet, P., Raybaud, P., Euzen, P. & Toulhoat, H. Use of DFT to achieve a rational understanding of acid–basic properties of γ-alumina surfaces. J. Catal. 226, 54–68 (2004).

    Article  CAS  Google Scholar 

  40. Nell, J. & O’Neill, H. S. C. Gibbs free energy of formation and heat capacity of PdO: a new calibration of the Pd–PdO buffer to high temperatures and pressures. Geochim. Cosmochim. Acta 60, 2487–2493 (1996).

    Article  CAS  Google Scholar 

  41. Rogal, J., Reuter, K. & Scheffler, M. Thermodynamic stability of PdO surfaces. Phys. Rev. B 69, 075421 (2004).

    Article  Google Scholar 

  42. Larsen, A. H., Mortensen, J. J., Blomqvist, J. & Jacobsen, K. W. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the US Department of Energy, Chemical Sciences, Geosciences and Biosciences Division of the Office of Basic Energy Sciences, via grant no. DE-AC02-76SF00515 to the SUNCAT Center for Interface Science and Catalysis. E.D.G. acknowledges support from the National Science Foundation Graduate Research Fellowship under grant no. DGE-1656518. M.C. acknowledges support from the School of Engineering at Stanford University and from a Terman Faculty Fellowship. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under award no. ECCS-1542152. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76F00515. A.S.H. and S.R.B. acknowledge support from the Department of Energy, Basic Energy Sciences Funded Consortium for Operando and Advanced Catalyst Characterization via Electronic Spectroscopy and Structure (Co-ACCESS) at SLAC. O. Mueller is thanked for beamtime assistance. E.M.D. and P.N.P. acknowledge support from the state of Baden-Württemberg, Germany through bwHPC (bwunicluster and JUSTUS, RV bw16G001 and bw17D011) and financial support from the Helmholtz Association.

Author information

Authors and Affiliations

Authors

Contributions

E.D.G. and M.C. conceived and designed the experiments. E.D.G. performed catalyst synthesis and testing. A.C.J.-P. performed HAADF-STEM characterization. E.M.D. performed DFT calculations with support from P.N.P. C.J.W. performed X-ray absorption spectroscopy analysis with support from A.S.H. and S.R.B. F.A.-P. contributed to the discussion of atomic energetics. E.D.G. and M.C. wrote the manuscript with contributions and discussions from all authors.

Corresponding author

Correspondence to Matteo Cargnello.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14; Supplementary Tables 1–3

DFT coordinates

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goodman, E.D., Johnston-Peck, A.C., Dietze, E.M. et al. Catalyst deactivation via decomposition into single atoms and the role of metal loading. Nat Catal 2, 748–755 (2019). https://doi.org/10.1038/s41929-019-0328-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0328-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing