Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rational design of selective metal catalysts for alcohol amination with ammonia

Abstract

The lack of selectivity for the direct amination of alcohols with ammonia (a modern and clean route for the synthesis of primary amines) is an unsolved problem. Here, we combine first-principles calculations, scaling relations, kinetic simulations and catalysis experiments to determine the key factors that govern the activity and selectivity of metal catalysts for this reaction. We show that the loss of selectivity towards primary amines is linked to a surface-mediated C–N bond coupling between two N-containing intermediates: CH3NH and CH2NH. The barrier for this step is low enough to compete with the main surface hydrogenation reactions and it can be used as a descriptor for selectivity. The activity and selectivity maps (using the C and O adsorption energies as descriptors) were combined for the computational screening of 348 dilute bimetallic catalysts. Among the best theoretical candidates, Co98.5Ag1.5 and Co98.5Ru1.5 (5 wt% Co) were identified experimentally to be the most promising catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A reaction scheme for the catalytic amination of primary alcohols by ammonia.
Fig. 2: The main reaction pathways considered in the DFT calculation for CH3OH amination with NH3.
Fig. 3: The calculated maps for activity and the selectivity controlling barrier.
Fig. 4: Four possible C–N coupling pathways catalysed by the metal surface.
Fig. 5: Transition state structures featuring C–N coupling between various N-containing intermediates on a Co(111) surface.
Fig. 6: The experimental TOF for amines in the amination of 1-octanol with NH3 on cobalt-based bimetallic catalysts.
Fig. 7: The experimental selectivity to the primary amine OA versus the total amine formation.

Similar content being viewed by others

Data availability

The data that support the plots in this paper and the other findings of this study are available from the corresponding authors on reasonable request.

Code availability

The script used for the modified microkinetic simulations using the open source CatMAP code is given in Supplementary Data 2.

References

  1. Brown, B. R. Organic Chemistry of Aliphatic Nitrogen Compounds (Oxford Univ. Press, New York, 1994).

  2. Rappoport, Z. The Chemistry of Anilines (Wiley, Chichester, 2007).

  3. Lawrence, S. A. Amines: Synthesis, Properties and Applications (Cambridge Univ. Press, Cambridge, 2004).

  4. Pera-Titus, M. & Shi, F. Catalytic amination of biomass-based alcohols. ChemSusChem 7, 1–4 (2014).

    Article  Google Scholar 

  5. Guillena, G., Ramón, D. J. & Yus, M. Hydrogen autotransfer in the N-alkylation of amines and related compounds using alcohols and amines as electrophiles. Chem. Rev. 110, 1611–1641 (2010).

    Article  CAS  Google Scholar 

  6. Dobereiner, G. E. & Crabtree, R. H. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem. Rev. 110, 681–703 (2010).

    Article  CAS  Google Scholar 

  7. Saidi, O., Blacker, A. J., Farah, M. M., Marsden, S. P. & Williams, J. M. J. Selective amine cross-coupling using iridium-catalyzed “borrowing hydrogen” methodology. Angew. Chem. Int. Ed. 48, 7375–7378 (2009).

    Article  CAS  Google Scholar 

  8. Klinkenberg, J. L. & Hartwig, J. F. Catalytic organometallic reactions of ammonia. Angew. Chem. Int. Ed. 50, 86–95 (2011).

    Article  CAS  Google Scholar 

  9. Gunanathan, C. & Milstein, D. Applications of acceptorless dehydrogenation and related transformations in chemical synthesis. Science 341, 1229712 (2013).

    Article  Google Scholar 

  10. Imm, S., Bahn, S., Neubert, L., Neumann, H. & Beller, M. An efficient and general synthesis of primary amines by ruthenium-catalyzed amination of secondary alcohols with ammonia. Angew. Chem. Int. Ed. 49, 8126–8129 (2010).

    Article  CAS  Google Scholar 

  11. Kim, J. W., Yamaguchi, K. & Mizuno, N. Heterogeneously catalyzed selective N-alkylation of aromatic and heteroaromatic amines with alcohols by a supported ruthenium hydroxide. J. Catal. 263, 205–208 (2009).

    Article  CAS  Google Scholar 

  12. Shimizu, K., Nishimura, M. & Satsuma, A. γ-Alumina-supported silver cluster for N-benzylation of anilines with alcohols. ChemCatChem 1, 497–503 (2009).

    Article  CAS  Google Scholar 

  13. Cui, X., Zhang, Y., Shi, F. & Deng, Y. Organic ligand-free alkylation of amines, carboxamides, sulfonamides, and ketones by using alcohols catalyzed by heterogeneous Ag/Mo oxides. Chem. Eur. J. 17, 1021–1028 (2011).

    Article  CAS  Google Scholar 

  14. He, L. et al. Efficient and clean gold-catalyzed one-pot selective N-alkylation of amines with alcohols. Chem. Eur. J. 16, 13965–13969 (2010).

    Article  CAS  Google Scholar 

  15. He, W. et al. Pt–Sn/γ-Al2O3-catalyzed highly efficient direct synthesis of secondary and tertiary amines and imines. Chem. Eur. J. 17, 13308–13317 (2011).

    Article  CAS  Google Scholar 

  16. Zhang, Y., Qi, X., Cui, X., Shi, F. & Deng, Y. Palladium catalyzed N-alkylation of amines with alcohols. Tetrahedron Lett. 52, 1334–1338 (2011).

    Article  CAS  Google Scholar 

  17. Corma, A., Ródenas, T. & Sabater, M. J. A bifunctional Pd/MgO solid catalyst for the one-pot selective N-monoalkylation of amines with alcohols. Chem. Eur. J. 16, 254–260 (2010).

    Article  CAS  Google Scholar 

  18. Kwon, M. S. et al. One-pot synthesis of imines and secondary amines by Pd-catalyzed coupling of benzyl alcohols and primary amines. J. Org. Chem. 74, 2877–2879 (2009).

    Article  CAS  Google Scholar 

  19. Shimizu, K.-I., Kon, K., Onodera, W., Yamazaki, H. & Kondo, J. N. Heterogeneous Ni catalyst for direct synthesis of primary amines from alcohols and ammonia. ACS Catal. 3, 112–117 (2013).

    Article  CAS  Google Scholar 

  20. Shimizu, K.-I., Imaiida, N., Kon, K., Siddiki, S. M. A. H. & Satsuma, A. Heterogeneous Ni catalysts for N-alkylation of amines with alcohols. ACS Catal. 3, 998–1005 (2013).

    Article  CAS  Google Scholar 

  21. Cho, J. H., Park, J. H., Chang, T. S., Kim, J. E. & Shin, C. H. Reductive amination of 2-propanol to monoisopropyl-amine over Ni/γ-Al2O3 catalysts. Catal. Lett. 143, 1319–1327 (2013).

    Article  CAS  Google Scholar 

  22. Shimizu, K.-I. Heterogeneous catalysis for the direct synthesis of chemicals by borrowing hydrogen methodology. Catal. Sci. Technol. 5, 1412–1427 (2015).

    Article  CAS  Google Scholar 

  23. Tomer, A., Yan, Z., Ponchel, A. & Pera-Titus, M. Mixed oxides supported low-nickel formulations for the direct amination of aliphatic alcohols with ammonia. J. Catal. 356, 133–146 (2017).

    Article  CAS  Google Scholar 

  24. Tomer, A. et al. Cyclodextrin-assisted synthesis of Ni/Al2O3 catalysts for direct amination of fatty alcohols. J. Catal. 356, 459–466 (2017).

    Google Scholar 

  25. Baiker, A. & Richarz, W. Catalytic amination of long chain aliphatic alcohols. Ind. Eng. Chem. Prod. Res. Dev. 16, 261–266 (1977).

    Article  CAS  Google Scholar 

  26. Santoro, F., Psaro, R., Ravasio, N. & Zaccheria, F. Reductive amination of ketones or amination of alcohols over heterogeneous Cu catalysts: matching the catalyst support with the N-alkylating agent. ChemCatChem 4, 1249–1254 (2012).

    Article  CAS  Google Scholar 

  27. Cho, J. H., Park, J. H., Chang, T. S., Seo, G. & Shin, C. H. Reductive amination of 2-propanol to monoisopropylamine over Co/γ-Al2O3 catalysts. Appl. Catal. A 417 418, 313–319 (2012).

    Article  Google Scholar 

  28. Rausch, A. K., Stehen, E. & Roessner, F. New aspects for heterogeneous cobalt-catalyzed hydroamination of ethanol. J. Catal. 253, 111–118 (2008).

    Article  CAS  Google Scholar 

  29. Baiker, A. & Kijenski, J. Catalytic synthesis of higher aliphatic amines from the corresponding alcohols. Catal. Rev. Sci. Eng. 27, 653–697 (1985).

    Article  CAS  Google Scholar 

  30. Kimura, H. & Taniguchi, H. Targeting quantitative synthesis for the one-step amination of fatty alcohols and dimethylamine. Appl. Catal. A 287, 191–196 (2015).

    Article  Google Scholar 

  31. Cui, X., Dai, X., Deng, Y. & Shi, F. Development of a general non-noble metal catalyst for the benign amination of alcohols with amines and ammonia. Chem. Eur. J. 19, 3665 (2013).

    Article  CAS  Google Scholar 

  32. Van Santen, R. A. & Neurock, M. Molecular Heterogeneous Catalysis: A Conceptual and Computational Approach (Wiley-VCH, 2006).

  33. Nøskov, J. K., Studt, F., Abild-Pedersen, F. & Bligaard, T. Fundamental Concepts in Heterogeneous Catalysis (John Wiley & Sons, Inc, Hoboken, New Jersey, 2014).

  34. Dumon, A. S. et al. Direct n-octanol amination by ammonia on supported Ni and Pd catalysts: activity is enhanced by “spectator” ammonia adsorbates. Catal. Sci. Technol 22, 611 (2018).

    Article  Google Scholar 

  35. Baiker, A., Caprez, W. & Holstein, W. L. Catalytic amination of aliphatic alcohols in the gas an liquid phases: kinetics and reaction pathway. Ind. Eng. Chem. Prod. Res. Dev. 22, 217–225 (2017).

    Google Scholar 

  36. Ogata, Y. & Kawasaki, A. Kinetics of the condensation of acetaldehyde with ammonia. Tetrahedron 20, 855–860 (1964).

    Article  CAS  Google Scholar 

  37. Tamura, M. & Tomishige, K. Redox properties of CeO2 at low temperature: the direct synthesis of imines from alcohol and amine. Angew. Chem. Int. Ed. 54, 864–867 (2015).

    Article  CAS  Google Scholar 

  38. Ruiz, D. et al. Direct amination of dodecanol with NH3 over heterogeneous catalysts. Catalyst screening and kinetic modelling. Chem. Eng. J. 307, 739–749 (2017).

    Article  CAS  Google Scholar 

  39. Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105 (2007).

    Article  CAS  Google Scholar 

  40. Calle-Vallejo, F., Loffreda, D., Koper, M. T. M. & Sautet, P. Introducing structural sensitivity into scaling relations between adsorption energies by means of coordination numbers. Nat. Chem. 7, 403–410 (2015).

    Article  CAS  Google Scholar 

  41. Van Santen, R. A., Neurock, M. & Shetty, S. G. Reactivity theory of transition-metal surfaces: a Brønsted–Evans–Polanyi linear activation energy–free-energy analysis. Chem. Rev. 110, 2005–2048 (2010).

    Article  Google Scholar 

  42. Liu, Z. P. & Hu, P. General trends in CO dissociation on transition metal surfaces. J. Chem. Phys. 114, 8244–8247 (2011).

    Article  Google Scholar 

  43. Wang, S., Vorotnikov, V., Sutton, J. E. & Vlachos, D. G. Brønsted-Evans-Polanyi and transition state scaling relations of furan derivatives on Pd(111) and their relation to those of small molecules. ACS Catal 4, 604–612 (2014).

    Article  CAS  Google Scholar 

  44. Honkala, K. et al. Ammonia synthesis from first-principles calculations. Science 307, 555–558 (2005).

    Article  CAS  Google Scholar 

  45. Studt, F. et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 320, 1320–1322 (2008).

    Article  CAS  Google Scholar 

  46. Medford, A. J. et al. CatMAP: a software package for descriptor-based microkinetic mapping of catalytic trends. Catal. Lett. 145, 794–807 (2015).

    Article  CAS  Google Scholar 

  47. Gomez, S., Peters, J. A. & Maschmeyer, T. The reductive amination of aldehydes and ketones and the hydrogenation of nitriles: mechanistic aspects and selectivity control. Adv. Synth. Catal. 344, 1037–1057 (2002).

    Article  CAS  Google Scholar 

  48. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  49. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  50. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  CAS  Google Scholar 

  51. Kresse, G. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  52. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  53. Steinmann, S. N. & Corminboeuf, C. Comprehensive benchmarking of a density-dependent dispersion correction. J. Chem. Theory Comput. 7, 3567–3577 (2011).

    Article  CAS  Google Scholar 

  54. Silbaugh, T. L. & Campbell, C. T. Energies of formation reactions measured for adsorbates on late transition metal surfaces. J. Phys. Chem. C 120, 25161–25172 (2016).

    Article  CAS  Google Scholar 

  55. Baiker, A., Monti, D. & Fan, Y. S. Deactivation of copper, nickel, and cobalt catalysts by interaction with aliphatic amines. J. Catal. 88, 81–88 (1984).

    Article  CAS  Google Scholar 

  56. Baiker, A. The role of hydrogen in the catalytic amination of alcohols and the disproportionate of amines. Stud. Surf. Sci. Catal. 41, 283–290 (1988).

    Article  CAS  Google Scholar 

  57. Ibañez, J., Araque-Marin, M., Paul, S. & Pera-Titus, M. Direct amination of 1-octanol with NH3 over Ag-Co/Al2O3: promoting effect of the H2 pressure on the reaction rate. Chem. Eng. J. 358, 1620–1630 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work received granted access to the HPC resources of CINES and IDRIS under allocation no. 2015-080609 made by GENCI. It also benefited from the computational resources of the PSMN. Financial support was provided by the ANR grant SHAPES (grant no. 13-CDII-0004-06). The authors express their gratitude to E. Leroy from ICMPE-CMTR (UMR 7182 CNRS) for measuring the STEM-EDS-SDD cartographies.

Author information

Authors and Affiliations

Authors

Contributions

T.W. and M.S. conducted the DFT calculations and microkinetics simulations, K.W., L.F., S.P. and J.I. performed the experiments and P.S., C.M. and M.P.-T. designed the study and wrote the paper.

Corresponding authors

Correspondence to Marc Pera-Titus or Philippe Sautet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figs. 1–30 and Supplementary references.

Supplementary Data 1

Atomic coordinates of the optimized computational models.

Supplementary Data 2

Script used for the modified microkinetic simulations using the open source CatMAP code.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Ibañez, J., Wang, K. et al. Rational design of selective metal catalysts for alcohol amination with ammonia. Nat Catal 2, 773–779 (2019). https://doi.org/10.1038/s41929-019-0327-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0327-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing