Enzyme catalysis under pressure

A strategy using pressure was devised to structurally identify conformational transitions in protein ensembles, allowing the rational prediction of mutations that induce pressure-driven enzyme activation. These results highlight the power of flexibility–function analyses in protein engineering design and applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Rational prediction of mutations that induce pressure-driven enzyme activation.


  1. 1.

    Campbell, E. et al. Nat. Chem. Biol. 12, 944–50 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Narayanan, C. et al. Structure 26, 426–36 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    Stiller, J. B. et al. Nat. Catal. (2019).

  4. 4.

    Lisi, G. P. & Loria, J. P. Prog. Nucl. Magn. Reson. Spectrosc. 92–93, 1–17 (2016).

    Article  Google Scholar 

  5. 5.

    Akasaka, K. Chem. Rev. 106, 1814–35 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    Wilding, M., Hong, N., Spence, M., Buckle, A. M. & Jackson, C. J. Biochem. Soc. Trans. 47, 701–11 (2019).

    CAS  Article  Google Scholar 

  7. 7.

    Davey, J. A., Damry, A. M., Goto, N. K. & Chica, R. A. Nat. Chem. Biol. 13, 1280–85 (2017).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Nicolas Doucet.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doucet, N. Enzyme catalysis under pressure. Nat Catal 2, 646–647 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing