Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation

Abstract

The development of efficient and low-cost electrocatalysts for the oxygen evolution reaction (OER) is critical for improving the efficiency of water electrolysis. Here, we report a strategy using Fe substitution to enable the inactive spinel CoAl2O4 to become highly active and superior to the benchmark IrO2. The Fe substitution is revealed to facilitate surface reconstruction into active Co oxyhydroxides under OER conditions. It also activates deprotonation on the reconstructed oxyhydroxide to induce negatively charged oxygen as an active site, thus significantly enhancing the OER activity of CoAl2O4. Furthermore, it promotes the pre-oxidation of Co and introduces great structural flexibility due to the uplift of the oxygen 2p levels. This results in the accumulation of surface oxygen vacancies along with lattice oxygen oxidation that terminates as Al3+ leaches, preventing further reconstruction. We showcase a promising way to achieve tunable electrochemical reconstruction by optimizing the electronic structure for low-cost and robust spinel oxide OER catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural characterizations and OER performances of as-prepared CoFexAl2 − xO4 catalysts.
Fig. 2: In situ investigation of pre-OER behaviours of catalysts and schematic of the surface reconstruction and deprotonation process.
Fig. 3: Electronic interpretation of the effect of Fe substitution on surface reconstruction.
Fig. 4: Reconstruction-terminating mechanism with Al3+ leaching.
Fig. 5: Competitive potential in an electrolyser application.

Similar content being viewed by others

Data availability

The data related to this study are available from the authors upon reasonable request.

References

  1. Suntivich, J. et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    Article  CAS  Google Scholar 

  2. Grimaud, A., Hong, W. T., Shao-Horn, Y. & Tarascon, J. M. Anionic redox processes for electrochemical devices. Nat. Mater. 15, 121–126 (2016).

    Article  CAS  Google Scholar 

  3. Hong, W. T. et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8, 1404–1427 (2015).

    Article  CAS  Google Scholar 

  4. Lee, Y. et al. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399–404 (2012).

    Article  CAS  Google Scholar 

  5. Chao, W. et al. Cations in octahedral sites: a descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater. 29, 1606800 (2017).

    Article  Google Scholar 

  6. Fabbri, E. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 16, 925–931 (2017).

    Article  CAS  Google Scholar 

  7. Hsu, C.-S. et al. Valence- and element-dependent water oxidation behaviors: in situ X-ray diffraction, absorption and electrochemical impedance spectroscopies. Phys. Chem. Chem. Phys. 19, 8681–8693 (2017).

    Article  CAS  Google Scholar 

  8. Risch, M. et al. Structural changes of cobalt-based perovskites upon water oxidation investigated by EXAFS. J. Phys. Chem. C 117, 8628–8635 (2013).

    Article  CAS  Google Scholar 

  9. Bergmann, A. et al. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 6, 8625 (2015).

    Article  CAS  Google Scholar 

  10. Wang, H.-Y. et al. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 138, 36–39 (2016).

    Article  CAS  Google Scholar 

  11. Smith, R. D. L. et al. Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt oxides. Nat. Commun. 8, 2022 (2017).

    Article  Google Scholar 

  12. Görlin, M. et al. Tracking catalyst redox states and reaction dynamics in Ni–Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH. J. Am. Chem. Soc. 139, 2070–2082 (2017).

    Article  Google Scholar 

  13. Zhu, Y. G. et al. Unleashing the power and energy of LiFePO4-based redox flow lithium battery with a bifunctional redox mediator. J. Am. Chem. Soc. 139, 6286–6289 (2017).

    Article  CAS  Google Scholar 

  14. Walsh, A., Yan, Y., Al-Jassim, M. M. & Wei, S.-H. Electronic, energetic and chemical effects of intrinsic defects and Fe-doping of CoAl2O4: a DFT+U study. J. Phys. Chem. C 112, 12044–12050 (2008).

    Article  CAS  Google Scholar 

  15. Terada, Y. et al. In situ XAFS analysis of Li(Mn, M)2O4 (M = Cr, Co, Ni) 5 V cathode materials for lithium-ion secondary batteries. J. Solid State Chem. 156, 286–291 (2001).

    Article  CAS  Google Scholar 

  16. Burke, L. D. & Murphy, O. J. Cyclic voltammetry as a technique for determining the surface area of RuO2 electrodes. J. Electroanal. Chem. 96, 19–27 (1979).

    Article  CAS  Google Scholar 

  17. Stoerzinger, K. A., Qiao, L., Biegalski, M. D. & Shao-Horn, Y. Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2. J. Phys. Chem. Lett. 5, 1636–1641 (2014).

    Article  CAS  Google Scholar 

  18. Yeo, B. S. & Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 133, 5587–5593 (2011).

    Article  CAS  Google Scholar 

  19. Kanan, M. W. et al. Structure and valency of a cobalt–phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 132, 13692–13701 (2010).

    Article  CAS  Google Scholar 

  20. Nkeng, P. et al. Characterization of spinel-type cobalt and nickel oxide thin films by X-ray near grazing diffraction, transmission and reflectance spectroscopies, and cyclic voltammetry. J. Electrochem. Soc. 142, 1777–1783 (1995).

    Article  CAS  Google Scholar 

  21. McAlpin, J. G. et al. EPR evidence for Co(iv) species produced during water oxidation at neutral pH. J. Am. Chem. Soc. 132, 6882–6883 (2010).

    Article  CAS  Google Scholar 

  22. Costentin, C., Porter, T. R. & Saveant, J. M. How do pseudocapacitors store energy? Theoretical analysis and experimental illustration. ACS Appl. Mater. Interfaces 9, 8649–8658 (2017).

    Article  CAS  Google Scholar 

  23. Wang, Z. L., Bentley, J. & Evans, N. D. Valence state mapping of cobalt and manganese using near-edge fine structures. Micron 31, 355–362 (2000).

    Article  CAS  Google Scholar 

  24. Trześniewski, B. J. et al. In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: the effect of pH on electrochemical activity. J. Am. Chem. Soc. 137, 15112–15121 (2015).

    Article  Google Scholar 

  25. Yang, C., Fontaine, O., Tarascon, J. M. & Grimaud, A. Chemical recognition of active oxygen species on the surface of oxygen evolution reaction electrocatalysts. Angew. Chem. Int. Ed. 56, 8652–8656 (2017).

    Article  CAS  Google Scholar 

  26. Zhang, M., de Respinis, M. & Frei, H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat. Chem. 6, 362–367 (2014).

    Article  CAS  Google Scholar 

  27. Grimaud, A. et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017).

    Article  CAS  Google Scholar 

  28. Lee, Y.-L. et al. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. Energy Environ. Sci. 4, 3966–3970 (2011).

    Article  CAS  Google Scholar 

  29. Mefford, J. T. et al. Water electrolysis on La1 − xSrxCoO3 − δ perovskite electrocatalysts. Nat. Commun. 7, 11053 (2016).

    Article  CAS  Google Scholar 

  30. Cheng, X. et al. Oxygen evolution reaction on La1 – xSrxCoO3 perovskites: a combined experimental and theoretical study of their structural, electronic and electrochemical properties. Chem. Mater. 27, 7662–7672 (2015).

    Article  CAS  Google Scholar 

  31. Grimaud, A. et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439 (2013).

    Article  Google Scholar 

  32. Zhou, Y. et al. Superexchange effects on oxygen reduction activity of edge-sharing [CoxMn1 − xO6] octahedra in spinel oxide. Adv. Mater. 30, 1705407 (2018).

    Article  Google Scholar 

  33. Hong, W. T. et al. Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides. Energy Environ. Sci. 10, 2190–2200 (2017).

    Article  CAS  Google Scholar 

  34. Rong, X., Parolin, J. & Kolpak, A. M. A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 6, 1153–1158 (2016).

    Article  CAS  Google Scholar 

  35. Goodenough, J. B. Perspective on engineering transition-metal oxides. Chem. Mater. 26, 820–829 (2013).

    Article  Google Scholar 

  36. May, K. J. et al. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J. Phys. Chem. Lett. 3, 3264–3270 (2012).

    Article  CAS  Google Scholar 

  37. Bajdich, M. et al. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521–13530 (2013).

    Article  CAS  Google Scholar 

  38. Chivot, J. et al. New insight in the behaviour of Co–H2O system at 25–150 °C, based on revised Pourbaix diagrams. Corros. Sci. 50, 62–69 (2008).

    Article  CAS  Google Scholar 

  39. Dau, H., Liebisch, P. & Haumann, M. X-ray absorption spectroscopy to analyze nuclear geometry and electronic structure of biological metal centers—potential and questions examined with special focus on the tetra-nuclear manganese complex of oxygenic photosynthesis. Anal. Bioanal. Chem. 376, 562–583 (2003).

    Article  CAS  Google Scholar 

  40. Newville, M. IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8, 322–324 (2001).

    Article  CAS  Google Scholar 

  41. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  42. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  43. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  44. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  45. Tan, H., Verbeeck, J., Abakumov, A. & Van Tendeloo, G. Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy 116, 24–33 (2012).

    Article  CAS  Google Scholar 

  46. Jung, S. et al. Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction. J. Mater. Chem. A 4, 3068–3076 (2016).

    Article  CAS  Google Scholar 

  47. Kim, N.-I. et al. Enhancing activity and stability of cobalt oxide electrocatalysts for the oxygen evolution reaction via transition metal doping. J. Electrochem. Soc. 163, F3020–F3028 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

T.W., S.S. and J.S. contributed equally to this work. The authors acknowledge support from the Singapore Ministry of Education Tier 2 Grant (MOE2017-T2-1-009) and the Singapore National Research Foundation under its Campus for Research Excellence and Technological Enterprise (CREATE) programme. The authors also thank the Facility for Analysis, Characterisation, Testing and Simulation (FACTS) in Nanyang Technological University for materials characterizations and the XAFCA beamline of the Singapore Synchrotron Light Source for XAFS characterization.

Author information

Authors and Affiliations

Authors

Contributions

T.W., S.S., A.G. and Z.J.X. conceived the original concept and initiated the project. T.W. prepared the materials and performed electrochemical and XRD measurements. S.S. helped design the set-up for in situ XAS measurements. S.X. and T.W. carried out the XAS measurements. Y.D. and T.W. processed and analysed the XAS data. J.S. worked on the DFT calculations and analysis. W.A.S., C.L.G. and B.C. carried out HRTEM and STEM-EELS investigations. L.Z. conducted the measurements in the MEA system. L.Z., H.W., H.Li and G.G.S. analysed the MEA results. T.W. wrote the manuscript with input from all authors, and Z.J.X., A.G. and S.S. revised the manuscript.

Corresponding authors

Correspondence to Alexis Grimaud or Zhichuan J. Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18, Supplementary Notes 1–2, Supplementary Tables 1–11 and Supplementary references.

Supplementary Data 1

Atomic coordinates of the optimized computational models.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Sun, S., Song, J. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat Catal 2, 763–772 (2019). https://doi.org/10.1038/s41929-019-0325-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0325-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing