Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Palladium-catalysed C−H glycosylation for synthesis of C-aryl glycosides

Abstract

C-aryl glycosides are widely found in nature and play important roles in drug design. Despite the significant progress made over the past few decades, efficient and stereoselective synthesis of complex C-aryl glycosides remains challenging, lagging far behind the state of the art of the synthesis of O- or N-glycosides. Here, we report a simple and powerful bioinspired strategy for the stereoselective synthesis of C-aryl glycosides via palladium-catalysed ortho-directed C(sp2)−H functionalization of arenes and heteroarenes with easily accessible glycosyl chloride donors. The catalytic palladacycle intermediate generated via C−H palladation provides a soft aryl nucleophile that can react with glycosyl oxocarbenium ion partners with high efficiency and excellent stereocontrol. The method can be applied to a wide range of arene and heteroarene substrates, glycosyl chloride donors and auxiliary groups. It can simplify the synthesis of a variety of complex C-aryl glycosides and offers a tool for late-stage modification of drug molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Occurrence and synthesis strategies for C-aryl glycosides.
Fig. 2: Synthesis of C-aryl pyranosides via Pd-catalysed auxiliary-directed ortho C(sp2)−H glycosylation.
Fig. 3: Synthesis of C-aryl furanoside.
Fig. 4: Pd-catalysed ortho C−H glycosylation of phenol substrates using a carbamate-linked AQ auxiliary.
Fig. 5: Synthetic utility of AQ-directed ortho C−H glycosylation of arenes and heteroarenes.
Fig. 6: Mechanistic studies.

Similar content being viewed by others

Data availability

The X-ray crystallographic coordinates for the structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition nos. 1900197, 1900198 and 1900200. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. All other data are available from the authors upon reasonable request.

References

  1. Levy, D. E. & Tang, C. The Chemistry of C-glycosides (Elsevier, 1995).

  2. Taniguchi, N., Endo, T., Hart, G. W., Seeberger, P. H. & Wong, C.-H. (eds) Glycoscience: Biology and Medicine (Springer, 2015).

  3. Bililign, T., Griffith, B. R. & Thorson, J. S. Structure, activity, synthesis and biosynthesis of aryl-C-glycosides. Nat. Prod. Rep. 22, 742–760 (2005).

    Article  CAS  Google Scholar 

  4. Štambaský, J., Hocek, M. & Kočovský, P. C-nucleosides: synthetic strategies and biological applications. Chem. Rev. 109, 6729–6764 (2009).

    Article  Google Scholar 

  5. De Clercq, E. C‐nucleosides to be revisited. J. Med. Chem. 59, 2301–2311 (2016).

    Article  Google Scholar 

  6. Yang, Y. & Yu, B. Recent advances in the chemical synthesis of C‐glycosides. Chem. Rev. 117, 12281–12356 (2017).

    Article  CAS  Google Scholar 

  7. Kitamura, K., Ando, Y., Matsumoto, T. & Suzuki, K. Total synthesis of aryl C‐glycoside natural products: strategies and tactics. Chem. Rev. 118, 1495–1598 (2018).

    Article  CAS  Google Scholar 

  8. Palmacci, E. R. & Seeberger, P. H. Synthesis of C-aryl and C-alkyl glycosides using glycosyl phosphates. Org. Lett. 3, 1547–1550 (2001).

    Article  CAS  Google Scholar 

  9. McKay, M. J. & Nguyen, H. M. Recent advances in transition metal-catalyzed glycosylation. ACS Catal. 2, 1563–1595 (2012).

    Article  CAS  Google Scholar 

  10. Gong, H. & Gagné, M. R. Diastereoselective Ni-catalyzed Negishi cross-coupling approach to saturated, fully oxygenated C-alkyl and C-aryl glycosides. J. Am. Chem. Soc. 130, 12177–12183 (2008).

    Article  CAS  Google Scholar 

  11. Nicolas, L. et al. Diastereoselective metal-catalyzed synthesis of C-aryl and C-vinyl glycosides. Angew. Chem. Int. Ed. 51, 11101–11104 (2012).

    Article  CAS  Google Scholar 

  12. Zeng, J., Ma, J., Xiang, S., Cai, S. & Liu, X.-W. Stereoselective β-C-glycosylation by a palladium-catalyzed decarboxylative allylation: formal synthesis of aspergillide A. Angew. Chem. Int. Ed. 52, 5134–5137 (2013).

    Article  CAS  Google Scholar 

  13. Zhu, F., Rourke, M. J., Yang, T., Rodriguez, J. & Walczak, M. A. Highly stereospecific cross-coupling reactions of anomeric stannanes for the synthesis of C‐aryl glycosides. J. Am. Chem. Soc. 138, 12049–12052 (2016).

    Article  CAS  Google Scholar 

  14. Zhu, F. et al. Glycosyl cross-coupling of anomeric nucleophiles: scope, mechanism and applications in the synthesis of aryl C‐glycosides. J. Am. Chem. Soc. 139, 17908–17922 (2017).

    Article  CAS  Google Scholar 

  15. Adak, L. et al. Synthesis of aryl C‐glycosides via iron-catalyzed cross coupling of halosugars: stereoselective anomeric arylation of glycosyl radicals. J. Am. Chem. Soc. 139, 10693–10701 (2017).

    Article  CAS  Google Scholar 

  16. RajanBabu, T. V. Pd(0)-catalyzed C-glycosylation: a facile alkylation of trifluoroacetylglucal. J. Org. Chem. 50, 3642–3644 (1985).

    Article  CAS  Google Scholar 

  17. Dai, Y., Tian, B., Chen, H. & Zhang, Q. Palladium-catalyzed stereospecific C‐glycosylation of glycals with vinylogous acceptors. ACS Catal. 9, 2909–2915 (2019).

    Article  CAS  Google Scholar 

  18. Zaitsev, V. G., Shabashov, D. & Daugulis, O. Highly regioselective arylation of sp 3 C–H bonds catalyzed by palladium acetate. J. Am. Chem. Soc. 127, 13154–13155 (2005).

    Article  CAS  Google Scholar 

  19. Shabashov, D. & Daugulis, O. Auxiliary-assisted palladium-catalyzed arylation and alkylation of sp 2 and sp 3 carbon–hydrogen bonds. J. Am. Chem. Soc. 132, 3965–3972 (2010).

    Article  CAS  Google Scholar 

  20. Daugulis, O., Do, H. & Shabashov, D. Palladium- and copper-catalyzed arylation of carbon–hydrogen bonds. Acc. Chem. Res. 42, 1074–1086 (2009).

    Article  CAS  Google Scholar 

  21. He, G., Wang, B., Nack, W. A. & Chen, G. Syntheses and transformations of α‐amino acids via palladium-catalyzed auxiliary-directed sp 3 C−H functionalization. Acc. Chem. Res. 49, 635–645 (2016).

    Article  CAS  Google Scholar 

  22. Zhang, S.-Y., Li, Q., He, G., Nack, W. A. & Chen, G. Pd-catalyzed monoselective ortho-C−H alkylation of N‐quinolyl benzamides: evidence for stereoretentive coupling of secondary alkyl iodides. J. Am. Chem. Soc. 137, 531–539 (2015).

    Article  CAS  Google Scholar 

  23. Chen, K. & Shi, B.-F. Sulfonamide-promoted palladium(ii)-catalyzed alkylation of unactivated methylene C(sp 3)−H bonds with alkyl iodides. Angew. Chem. Int. Ed. 53, 11950–11954 (2014).

    Article  CAS  Google Scholar 

  24. Wang, Z., Kuninobu, Y. & Kanai, M. Palladium-catalyzed oxirane-opening reaction with arenes via C−H bond activation. J. Am. Chem. Soc. 137, 6140–6143 (2015).

    Article  CAS  Google Scholar 

  25. Liu, M., Niu, Y., Wu, Y.-F. & Ye, X.-S. Ligand-controlled monoselective C‐aryl glycoside synthesis via palladium-catalyzed C−H functionalization of N‐quinolyl benzamides with 1‐iodoglycals. Org. Lett. 18, 1836–1839 (2016).

    Article  CAS  Google Scholar 

  26. Rouquet, G. & Chatani, N. Catalytic functionalization of C(sp 2)−H and C(sp 3)−H bonds by using bidentate directing groups. Angew. Chem. Int. Ed. 52, 11726–11743 (2013).

    Article  CAS  Google Scholar 

  27. Yasomannee, J. P. & Demchenko, A. V. Effect of remote picolinyl and picoloyl substituents on the stereoselectivity of chemical glycosylation. J. Am. Chem. Soc. 134, 20097–20102 (2012).

    Article  Google Scholar 

  28. Hickman, A. J. & Sanford, M. S. High-valent organometallic copper and palladium in catalysis. Nature 484, 177–185 (2012).

    Article  CAS  Google Scholar 

  29. Chen, X., Engle, K. M., Wang, D.-H. & Yu, J.-Q. Palladium(ii)-catalyzed C−H activation/C–C cross-coupling reactions: versatility and practicality. Angew. Chem. Int. Ed. 48, 5094–5115 (2009).

    Article  CAS  Google Scholar 

  30. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C−H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    Article  CAS  Google Scholar 

  31. Colby, D. A., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed C–C bond formation via heteroatom-directed C−H bond activation. Chem. Rev. 110, 624–655 (2010).

    Article  CAS  Google Scholar 

  32. Ackermann, L. Carboxylate-assisted transition-metal-catalyzed C−H bond functionalizations: mechanism and scope. Chem. Rev. 111, 1315–1345 (2011).

    Article  CAS  Google Scholar 

  33. McMurray, L., O’Hara, F. & Gaunt, M. J. Recent developments in natural product synthesis using metal-catalysed C–H bond functionalisation. Chem. Soc. Rev. 40, 1885–1898 (2011).

    Article  CAS  Google Scholar 

  34. Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C−H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012).

    Article  CAS  Google Scholar 

  35. Wencel-Delord, J. & Glorius, G. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem. 5, 369–375 (2013).

    Article  CAS  Google Scholar 

  36. Hartwig, J. F. Evolution of C−H bond functionalization from methane to methodology. J. Am. Chem. Soc. 138, 2–24 (2016).

    Article  CAS  Google Scholar 

  37. Engle, K. M., Wang, D.-H. & Yu, J.-Q. Ligand-accelerated C−H activation reactions: evidence for a switch of mechanism. J. Am. Chem. Soc. 132, 14137–14151 (2010).

    Article  CAS  Google Scholar 

  38. Cheng, G., Li, T.-J. & Yu, J.-Q. Practical Pd(ii)-catalyzed C−H alkylation with epoxides: one-step syntheses of 3,4-dihydroisocoumarins. J. Am. Chem. Soc. 137, 10950–10953 (2015).

    Article  CAS  Google Scholar 

  39. Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chem. Soc. Rev. 47, 6603–6743 (2018).

    Article  CAS  Google Scholar 

  40. Jain, S. K. et al. Pyrano-isochromanones as IL‐6 inhibitors: synthesis, in vitro and in vivo antiarthritic activity. J. Med. Chem. 57, 7085–7097 (2014).

    Article  CAS  Google Scholar 

  41. Lipshutz, B., Pollart, D., Monforte, J. & Katsuki, H. Pd(ii)-catalyzed acetal/ketal hydrolysis/exchange reactions. Tetrahedron Lett. 26, 705–708 (1985).

    Article  CAS  Google Scholar 

  42. Asao, N., Nogami, T., Takahashi, K. & Yamamoto, Y. Pd(ii) acts simultaneously as a Lewis acid and as a transition-metal catalyst: synthesis of cyclic alkenyl ethers from acetylenic aldehydes. J. Am. Chem. Soc. 124, 764–765 (2002).

    Article  CAS  Google Scholar 

  43. Lucero, C. G. & Woerpel, K. A. Stereoselective C-glycosylation reactions of pyranoses: the conformational preference and reactions of the mannosyl cation. J. Org. Chem. 71, 2641–2647 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.C. acknowledges support from NSFC grants 21672105, 21421062, 91753124 and 21725204.

Author information

Authors and Affiliations

Authors

Contributions

Q.W. initiated the project, carried out most of the reaction optimization and structural determination of products, and prepared the Supplememtary Information. S.A., Z.D., W.Z. and Z.H. expanded the reaction scope. G.H. supervised the project. G.C. supervised the project and prepared the manuscript.

Corresponding authors

Correspondence to Gang He or Gong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Supplementary Figs. 1–45 Supplementary Tables 1–26, Supplementary references.

compound 40

Crystallographic data for compound 40.

compound 68

Crystallographic data for compound 68.

compound 70

Crystallographic data for compound 70.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., An, S., Deng, Z. et al. Palladium-catalysed C−H glycosylation for synthesis of C-aryl glycosides. Nat Catal 2, 793–800 (2019). https://doi.org/10.1038/s41929-019-0324-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0324-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing