Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biocompatibility and therapeutic potential of glycosylated albumin artificial metalloenzymes

Abstract

The ability of natural metalloproteins to prevent inactivation of their metal cofactors by biological metabolites, such as glutathione, is an area that has been largely ignored in the field of artificial metalloenzyme (ArM) development. Yet, for ArM research to transition into future therapeutic applications, biocompatibility remains a crucial component. The work presented here shows the creation of a human serum albumin-based ArM that can robustly protect the catalytic activity of a bound ruthenium metal, even in the presence of 20 mM glutathione under in vitro conditions. To exploit this biocompatibility, the concept of glycosylated artificial metalloenzymes (GArM) was developed, which is based on functionalizing ArMs with N-glycan targeting moieties. As a potential drug therapy, this study shows that ruthenium-bound GArM complexes could preferentially accumulate to varying cancer cell lines via glycan-based targeting for prodrug activation of the anticancer agent umbelliprenin using ring-closing metathesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of biocompatible ArMs.
Fig. 2: Characterization of alb–Ru complexes used in this study.
Fig. 3: Catalytic activity investigation of alb–Ru complexes for ring-closing and ene–yne cross-metathesis.
Fig. 4: Reactivity and kinetic exploration of alb–Ru complexes under GSH-containing conditions.
Fig. 5: Modelling (R)-enantiomers of Ru1–3,6 into the drug site I binding pocket of albumin (PDB:1H9Z).
Fig. 6: Development of targeting ArMs.
Fig. 7: GArM-based anticancer therapy.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Rebelein, J. G. & Ward, T. R. In vivo catalyzed new-to-nature reactions. Curr. Opin. Biotechnol. 53, 106–114 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Corso, C. R. & Acco, A. Glutathione system in animal model of solid tumors: from regulation to therapeutic target. Crit. Rev. Oncol. Hematol. 128, 43–57 (2018).

    Article  PubMed  Google Scholar 

  3. Wu, G. et al. Glutathione metabolism and its implications for health. J. Nutr. 134, 489–492 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Miller, M. A. et al. Nano-palladium is a cellular catalyst for in vivo chemistry. Nat. Commun. 8, 15906 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Clavadetscher, J. et al. Copper catalysis in living systems and in situ drug synthesis. Angew. Chem. Int. Ed. 55, 15662–15666 (2016).

    Article  CAS  Google Scholar 

  6. Clavadetscher, J. et al. In-cell dual drug synthesis by cancer-targeting palladium catalysts. Angew. Chem. Int. Ed. 56, 6864–6868 (2017).

    Article  CAS  Google Scholar 

  7. Weiss, J. T. et al. Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nat. Commun. 5, 3277 (2014).

    Article  PubMed  CAS  Google Scholar 

  8. Pérez-López, A. M. et al. Gold-triggered uncaging chemistry in living systems. Angew. Chem. Int. Ed. 56, 12548–12552 (2017).

    Article  CAS  Google Scholar 

  9. Bray, T. L. et al. Bright insights into palladium-triggered local chemotherapy. Chem. Sci. 9, 7354–7361 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, Y. et al. Catalytically active single-chain polymeric nanoparticles: exploring their functions in complex biological media. J. Am. Chem. Soc. 140, 3423–3433 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, J. et al. Palladium-triggered deprotection chemistry for protein activation in living cells. Nat. Chem. 6, 352–361 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Vidal, C. et al. Concurrent and orthogonal gold(i) and ruthenium(ii) catalysis inside living cells. Nat. Commun. 9, 1913 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Destito, P. et al. Hollow nanoreactors for Pd-catalyzed Suzuki–Miyaura coupling and O-propargyl cleavage reactions in bio-relevant aqueous media. Chem. Sci. 10, 2598–2603 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Tonga, G. Y. et al. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat. Chem. 7, 597–603 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Streu, C. & Meggers, E. Ruthenium-induced allylcarbamate cleavage in living cells. Angew. Chem. Int. Ed. 45, 5645–5648 (2006).

    Article  CAS  Google Scholar 

  16. Völker, T., Dempwolff, F., Graumann, P. L. & Meggers, E. Progress towards bioorthogonal catalysis with organometallic compounds. Angew. Chem. Int. Ed. 53, 10536–10540 (2014).

    Article  CAS  Google Scholar 

  17. Tomás-Gamasa, M., Martínez-Calvo, M., Couceiro, J. R. & Mascareñas, J. L. Transition metal catalysis in the mitochondria of living cells. Nat. Commun. 7, 12538 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yusop, R. M. et al. Palladium-mediated intracellular chemistry. Nat. Chem. 3, 239–243 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Unciti-Broceta, A. et al. Synthesis of polystyrene microspheres and functionalization with Pd(0) nanoparticles to perform bioorthogonal organometallic chemistry in living cells. Nat. Protoc. 7, 1207–1218 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Jeschek, M., Panke, S. & Ward, T. R. Artificial metalloenzymes on the verge of new-to-nature metabolism. Trends Biotechnol. 36, 60–72 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Ringenberg, M. R. & Ward, T. R. Merging the best of two worlds: artificial metalloenzymes for enantioselective catalysis. Chem. Commun. 47, 8470–8476 (2011).

    Article  CAS  Google Scholar 

  22. Heinisch, T. & Ward, T. R. Artificial metalloenzymes based on the biotin–streptavidin technology: challenges and opportunities. Acc. Chem. Res. 49, 1711–1721 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Schwizer, F. et al. Artificial metalloenzymes: reaction scope and optimization strategies. Chem. Rev. 118, 142–231 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Lewis, J. C. Artificial metalloenzymes and metallopeptide catalysts for organic synthesis. ACS Catal. 3, 2954–2975 (2013).

    Article  CAS  Google Scholar 

  25. Lewis, J. C. Metallopeptide catalysts and artificial metalloenzymes containing unnatural amino acids. Curr. Opin. Chem. Biol. 25, 27–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Liang, A. D., Serrano-Plana, J., Peterson, R. L. & Ward, T. R. Artificial metalloenzymes based on the biotin–streptavidin technology: enzymatic cascades and directed evolution. Acc. Chem. Res. 52, 585–595 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Coelho, P. S., Brustad, E. M., Kannan, A. & Arnold, F. H. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 339, 307–310 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Coelho, P. S. et al. A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo. Nat. Chem. Biol. 9, 485–487 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Prier, C. K. et al. Enantioselective, intermolecular benzylic C–H amination catalysed by an engineered iron-haem enzyme. Nat. Chem. 9, 629–634 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kan, S. B. J., Lewis, R. D., Chen, K. & Arnold, F. H. Directed evolution of cytochrome c for carbon–silicon bond formation: bringing silicon to life. Science 354, 1048–1051 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matthews, M. L. et al. Direct nitration and azidation of aliphatic carbons by an iron-dependent halogenase. Nat. Chem. Biol. 10, 209–215 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zastrow, M. L., Peacock, A. F. A., Stuckey, J. A. & Pecoraro, V. L. Hydrolytic catalysis and structural stabilization in a designed metalloprotein. Nat. Chem. 4, 118–123 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Khare, S. D. et al. Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis. Nat. Chem. Biol. 8, 294–300 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Song, W. J. & Tezcan, F. A. A designed supramolecular protein assembly with in vivo enzymatic activity. Science 346, 1525–1528 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Oohora, K. et al. C(sp 3)–H bond hydroxylation catalyzed by myoglobin reconstituted with manganese porphycene. J. Am. Chem. Soc. 135, 17282–17285 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Key, H. M., Dydio, P., Clark, D. S. & Hartwig, J. F. Abiological catalysis by artificial haem proteins containing noble metals in place of iron. Nature 534, 534–537 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Dydio, P. et al. An artificial metalloenzyme with the kinetics of native enzymes. Science 354, 102–106 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Ghattas, W. et al. Receptor-based artificial metalloenzymes on living human cells. J. Am. Chem. Soc. 140, 8756–8762 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Zhao, J. et al. An artificial metalloenzyme for carbene transfer based on a biotinylated dirhodium anchored within streptavidin. Catal. Sci. Technol. 8, 2294–2298 (2018).

    Article  CAS  Google Scholar 

  40. Hyster, T. K., Knorr, L., Ward, T. R. & Rovis, T. Biotinylated Rh(iii) complexes in engineered streptavidin for accelerated asymmetric C–H activation. Science 338, 500–503 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Yang, H., Srivastava, P., Zhang, C. & Lewis, J. C. A general method for artificial metalloenzyme formation through strain-promoted azide–alkyne cycloaddition. ChemBioChem 15, 223–227 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Yang, H. et al. Evolving artificial metalloenzymes via random mutagenesis. Nat. Chem. 10, 318–324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Srivastava, P., Yang, H., Ellis-Guardiola, K. & Lewis, J. C. Engineering a dirhodium artificial metalloenzyme for selective olefin cyclopropanation. Nat. Commun. 6, 7789 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Grimm, A. R. et al. A whole cell E. coli display platform for artificial metalloenzymes: poly(phenylacetylene) production with a rhodium–nitrobindin metalloprotein. ACS Catal. 8, 2611–2614 (2018).

    Article  CAS  Google Scholar 

  45. Köhler, V. et al. Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes. Nat. Chem. 5, 93–99 (2012).

    Article  PubMed  CAS  Google Scholar 

  46. Raines, D. J. et al. Redox-switchable siderophore anchor enables reversible artificial metalloenzyme assembly. Nat. Catal. 1, 680–688 (2018).

    Article  CAS  Google Scholar 

  47. Zhao, J. et al. Genetic engineering of an artificial metalloenzyme for transfer hydrogenation of a self-immolative substrate in Escherichia coli’s periplasm. J. Am. Chem. Soc. 140, 13171–13175 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Jeschek, M. et al. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537, 661–665 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Lo, C. et al. Artificial metalloenzymes for olefin metathesis based on the biotin–(strept)avidin technology. Chem. Commun. 47, 12065–12067 (2011).

    Article  CAS  Google Scholar 

  50. Zhao, J., Kajetanowicz, A. & Ward, T. R. Carbonic anhydrase II as host protein for the creation of a biocompatible artificial metathesase. Org. Biomol. Chem. 13, 5652–5655 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Mayer, C., Gillingham, D. G., Ward, T. R. & Hilvert, D. An artificial metalloenzyme for olefin metathesis. Chem. Commun. 47, 12068–12070 (2011).

    Article  CAS  Google Scholar 

  52. Szponarski, M., Schwizer, F., Ward, T. R. & Gademann, K. On-cell catalysis by surface engineering of live cells with an artificial metalloenzyme. Commun. Chem. 1, 84 (2018).

    Article  CAS  Google Scholar 

  53. Heinisch, T. et al. E. coli surface display of streptavidin for directed evolution of an allylic deallylase. Chem. Sci. 9, 5383–5388 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sauer, D. F. et al. Hybrid ruthenium ROMP catalysts based on an engineered variant of β-barrel protein FhuA ΔCVF(tev): effect of spacer length. Chem. Asian J. 10, 177–182 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Philippart, F. et al. A hybrid ring-opening metathesis polymerization catalyst based on an engineered variant of the β-barrel protein FhuA. Chem. Eur. J. 19, 13865–13871 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Matsuo, T. et al. Creation of an artificial metalloprotein with a Hoveyda–Grubbs catalyst moiety through the intrinsic inhibition mechanism of α-chymotrypsin. Chem. Commun. 48, 1662–1664 (2012).

    Article  CAS  Google Scholar 

  57. Basauri-Molina, M. et al. Ring-closing and cross-metathesis with artificial metalloenzymes created by covalent active site-directed hybridization of a lipase. Chem. Eur. J. 21, 15676–15685 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Okamoto, Y. et al. A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell. Nat. Commun. 9, 1943 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Peters, T. Jr. Serum albumin. Adv. Protein Chem. 37, 161–245 (1985).

    Article  CAS  PubMed  Google Scholar 

  60. Ghuman, J. et al. Structural basis of the drug-binding specificity of human serum albumin. J. Mol. Biol. 353, 38–52 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Keating, G. M. Insulin detemir. Drugs 72, 2255–2287 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Petitpas, I. et al. Crystal structure analysis of warfarin binding to human serum albumin: anatomy of drug site I. J. Biol. Chem. 276, 22804–22809 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Lissi, E., Calderón, C. & Campos, A. Evaluation of the number of binding sites in proteins from their intrinsic fluorescence: limitations and pitfalls. Photochem. Photobiol. 89, 1413–1416 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Tetko, I. V. & Tanchuk, V. Y. Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J. Chem. Inf. Comput. Sci. 42, 1136–1145 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Peters, T. in All About Albumin Ch. 2 (Academic Press, 1995).

  67. Ogura, A. et al. Visualizing trimming dependence of biodistribution and kinetics with homo- and heterogeneous N-glycoclusters on fluorescent albumin. Sci. Rep. 6, 21797 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ogura, A. et al. Glycan multivalency effects toward albumin enable N-glycan-dependent tumor targeting. Bioorg. Med. Chem. Lett. 26, 2251–2254 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Ogura, A. et al. A viable strategy for screening the effects of glycan heterogeneity on target organ adhesion and biodistribution in live mice. Chem. Commun. 54, 8693–8696 (2018).

    Article  CAS  Google Scholar 

  70. Taichi, M. et al. In situ ligation of high- and low-affinity ligands to cell surface receptors enables highly selective recognition. Adv. Sci. 4, 1700147 (2017).

    Article  CAS  Google Scholar 

  71. Tsubokura, K. et al. In vivo gold complex catalysis within live mice. Angew. Chem. Int. Ed. 56, 3579–3584 (2017).

    Article  CAS  Google Scholar 

  72. Lin, Y., Vong, K., Matsuoka, K. & Tanaka, K. 2-Benzoylpyridine ligand complexation with gold critical for propargyl ester-based protein labeling. Chem. Eur. J. 24, 10595–10600 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Lahm, H. et al. Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures. J. Cancer Res. Clin. Oncol. 127, 375–386 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Carlsson, S. et al. Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface. Glycobiology 17, 663–676 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Shakeri, A., Iranshahy, M. & Iranshahi, M. Biological properties and molecular targets of umbelliprenin—a mini-review. J. Asian Nat. Prod. Res. 16, 884–889 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Rashidi, M. et al. Umbelliprenin shows antitumor, antiangiogenesis, antimetastatic, anti-inflammatory and immunostimulatory activities in 4T1 tumor-bearing Balb/c mice. J. Cell. Physiol. 233, 8908–8918 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Jun, M. et al. Synthesis and biological evaluation of isoprenylated coumarins as potential anti-pancreatic cancer agents. Bioorg. Med. Chem. Lett. 24, 4654–4658 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Barthomeuf, C., Lim, S., Iranshahi, M. & Chollet, P. Umbelliprenin from Ferula szowitsiana inhibits the growth of human M4Beu metastatic pigmented malignant melanoma cells through cell-cycle arrest in G1 and induction of caspase-dependent apoptosis. Phytomedicine 15, 103–111 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Gholami, O. et al. Umbelliprenin from Ferula szowitsiana activates both intrinsic and extrinsic pathways of apoptosis in Jurkat T-CLL cell line. Iran. J. Pharm. Res. 12, 371–376 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gholami, O. et al. Mcl-1 is up regulated by prenylated coumarin, umbelliprenin in Jurkat cells. Iran. J. Pharm. Res. 13, 1387–1392 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sibgatullina, R. et al. Highly reactive ‘RIKEN click’ probe for glycoconjugation on lysines. Tetrahedron Lett. 58, 1929–1933 (2017).

    Article  CAS  Google Scholar 

  82. Fery-Forgues, S. & Lavabre, D. Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J. Chem. Educ. 76, 1260–1264 (1999).

    Article  CAS  Google Scholar 

  83. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Piraux, G. et al. New ruthenium-based probes for selective G-quadruplex targeting. Chem. Eur. J. 23, 11872–11880 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

In memory of Professor Koji Nakanishi. The authors thank Glytech Inc. for supplying the complex N-glycans. CD spectral measurements were supported by the Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resourse Science (CSRS). This work was supported financially by JSPS KAKENHI grants nos. JP16H03287, JP18K19154, JP18K14347 and JP15H05843 for Middle Molecular Strategy. This work was also performed with the support of the Russian Government Program for Competitive Growth, granted to Kazan Federal University.

Author information

Authors and Affiliations

Authors

Contributions

Preparation of reagents was carried out by S.E. and I.N. Reactivity and kinetic studies were performed by S.E., I.N. and K.V. Binding studies were performed by K.V. Prodrug activation and biological studies were carried out by I.N. and K.V. Modelling studies were carried out by K.V. and N.K. The manuscript was written by K.V. and K.T. and checked by M.Y. and A.K. The research was directed and supervised by K.T.

Corresponding author

Correspondence to Katsunori Tanaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–60, Supplementary Tables 1–5, Supplementary methods, Supplementary discussion, Supplementary references

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eda, S., Nasibullin, I., Vong, K. et al. Biocompatibility and therapeutic potential of glycosylated albumin artificial metalloenzymes. Nat Catal 2, 780–792 (2019). https://doi.org/10.1038/s41929-019-0317-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0317-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing