Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gasoline automobile catalysis and its historical journey to cleaner air

Abstract

Environmental regulations in effect since the seventies have been instrumental in promoting continuous progress in the treatment of automotive exhausts, leading to an effective reduction in the emissions of carbon monoxide, unburned non-methane hydrocarbons, oxides of nitrogen and total particulates matter. This review provides an abbreviated history of the technological advances in the area of automotive catalysis achieved over almost 40 years, primarily by catalyst companies in concert with automobile manufacturers throughout the world. While technological milestones are discussed, the importance of fuel economy in decreasing CO2 emissions is acknowledged, alongside the need of decreasing the use of precious metals and improving the overall electronic control of the exhaust system. The transportation industry is facing the growing desire for a quantum jump towards non-fossil fuel vehicles. Therefore, recent developments in the area of batteries and fuel cell vehicles will also be introduced.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Fleet average non-methane organic gases plus NOx emission limits under low emission vehicles (LEV III) and Tier 1.
Fig. 2: Standard laboratory aging cycles.
Fig. 3: Supported catalyst for automotive applications.
Fig. 4: Typical performance of a three-way catalyst as a function of air-to-fuel ratio.
Fig. 5: The exhaust system.

Car image reproduced from Freepik/Flaticon.

Fig. 6: Hydrocarbon emissions as a function of trap location on a vehicle.
Fig. 7: Single cell PEM fuel cell with Pt containing anodes and cathodes.

Car image reproduced from Freepik/Flaticon.

References

  1. Cohn, G. Catalytic converters for exhaust emission control of commercial equipment powered by internal combustion engines. Environ. Health Perspect. 10, 159–164 (1975).

    Article  CAS  Google Scholar 

  2. Heck, R.M., Farrauto, R.J. & Gulati, S. in Catalytic Air Pollution Control: Commercial Technology 3rd edn, Ch. 6 (Wiley, 2009).

  3. Laws and regulations. California Air Resources Board http://www.arb.ca.gov/html/lawsregs (2017).

  4. Regulatory Background on the US Mobile Source Emission Control Program (MECA, 2019); http://www.meca.org/regulation/epa-tier-3-and-california-lev-iii-rulemakings

  5. Vehicles and engines. US Environmental Protection Agency http://www.epa.gov/otaq/tier3.htm (2017).

  6. Johnson, T. Vehicular emissions in review. SAE Int. J. Engines 7, 1207–1226 (2014).

    Article  Google Scholar 

  7. Johnson, T. & Ameya, J. Review of vehicular engine efficiency and emissions. in WCX 17: SAE World Congress Experience (SAE International, 2017).

  8. Regulation (EU) 2018/842 of the European Parliament and Council of 30 May 2018 binding annual greenhouse gas emission reductions by Member States from 2021 to 2030 contributing to climate action to meet commitments under the Paris Agreement and amending Regulation (EU) No 525/2013 (European Union, 2018); https://eur-lex.europa.eu/eli/reg/2018/842/oj

  9. EU: Light Duty: Emissions (Transport Policy, 2017); https://www.transportpolicy.net/standard/eu-light-duty-emissions/

  10. DeLosh, R. G. Dynamometer test procedures for three way catalyst screening. SAE Technical Papers https://doi.org/10.4271/770371 (1977).

  11. Heck, R. M., Hochmuth, J. K. & Dettling, J. C. Effect of oxygen concentration on aging of TWC catalysts SAE Technical Papers https://doi.org/10.4271/920098 (1992).

  12. Carol, L., Newman, N. & Mann, G. High temperature deactivation of three-way catalysts. SAE Technical Papers https://doi.org/10.4271/892040 (1989).

  13. Hammerle, R. & Wu, C. Effect of high temperature on three-way automotive catalyst. SAE Technical Papers https://doi.org/10.4271/840549 (1984).

  14. Nagashima, K., Zhang, G., Hirota, T. & Muraki, H. The effect of aging temperature on catalyst performance of Pt/Rh and Pd/Rh TWCs. SAE Technical Papers https://doi.org/10.4271/2000-01-1954 (1954).

  15. Rüetten, O., Pischinger, S., Küpper, C., Weinowski,R., Gian D, Ignatov, D., Betton, W. & Bahn, B. Catalyst aging method for future emissions standard requirements. SAE Technical Papers https://doi.org/10.4271/2010-01-1272 (2010).

  16. Kumar, S., Ferrari, V., Burk, P. L., Deeba, M. & Rogalo, J. Influence of phosphorous poisoning on TWC catalysts. SAE Technical Papers https://doi.org/10.4271/2003-01-3735 (2003).

  17. Johnson, M. et al. Effects of engine oil formulation variables on exhaust emissions in taxi fleet service. SAE Technical Papers https://doi.org/10.4271/2002-01-2680 (2002).

  18. Darr, S.T., Choksi,R.A., Hubbard, C.P., Johnson, M.D. & McCabe, R.W. Effects of oil-derived contaminants on emissions from TWC-equipped vehicles. SAE Technical Papers https://doi.org/10.4271/2000-01-1881 (2000).

  19. Brett, P. S., Neville, A. L., Preston, W. H. & Williamson, J. An investigation into lubricant related poisoning of automotive three-way catalysts and Lambda sensors. SAE Technical Papers https://doi.org/10.4271/890490 (1989).

  20. Williamson, W. B., Gandhi, H. S., Heyde, M. E. & Zawacki, G. A., Deactivation of three-way catalysts by fuel contaminants: lead, phosphorous, sulfur. SAE Technical Papers https://doi.org/10.4271/790942 (1979).

  21. Ueda, F., Sugiyama, S., Arimura, K., Hamaguchi, S. & Akiyama, K. Engine oil-derived effects on deactivation of monolithic TWC and oxygen sensors. SAE Technical Papers https://doi.org/10.4271/940746 (1994).

  22. Lafyatis, D.S., Petrow, R. & Bennett, C. The effects of oil-derived poisons on three-way catalyst performance. SAE Technical Papers https://doi.org/10.4271/2002-01-1093 (2002)

  23. Sumida, H. et. al. Analysis of phosphorus poisoning on exhaust catalysts from compact-class vehicle. SAE Technical Papers https://doi.org/10.4271/2004-01-0147 (2004).

  24. Matam, S. K. et al. Thermal and chemical aging of model three-way catalyst Pd/Al2O3 and its impact on the conversion of CNG vehicle exhaust. Catal. Today 184, 237–244 (2012).

    Article  CAS  Google Scholar 

  25. Culley, S., McDonnell, T., Ball, D., Kirby, C. & Hawes, S. The impact of passenger car motor oil phosphorus levels on automotive emissions control systems. SAE Technical Papers https://doi.org/10.4271/961898 (1996).

  26. Baik, J. et al. Effects of catalyst aging on the activity and selectivity of commercial three- way catalysts. Top. Catal. 42, 337–340 (2007).

    Article  Google Scholar 

  27. Brett, P. S., Neville, A. L., Preston, W. H. & Williamson, J. An investigation into lubricant related poisoning of automotive three-way catalysts and lambda sensors. SAE Technical Papers https://doi.org/10.4271/890490 (1989).

  28. Farrauto, R. J., Bartholomew, C. & Dorazio, L. in Introduction to Catalysis and Industrial Catalytic Processes Ch. 1–5 (Wiley, 2016).

  29. Heck, R.M., Farrauto, R.J. & Gulati, S. in Catalytic Air Pollution Control: Commercial Technology, 3rd edn, Ch. 1–5 (Wiley, 2009).

  30. Bartholomew, C. & Farrauto, R. J. in Fundamentals of Industrial Catalytic Processes 2nd edn, Ch. 1–5, (Wiley, 2005).

  31. Heck, R.M., Farrauto, R.J. & Gulati, S. in Catalytic Air Pollution Control: Commercial Technology, 3rd edn, Ch. 6 (Wiley, 2009).

  32. Golden, S. Perovskite-type metal oxide compounds. USPatent 6,352,955 (2002).

  33. Golden, S. Catalytic converter comprising perovskite-type metal oxide catalyst. US Patent 6,531,425 (2003).

  34. Gilsenti, A., Pacella, M., Guiotto, M., Natile, M. & Canu, P. Largely Cu doped LaCo1-x CuxO3 perovskites for TWC. APCAT B: Environ. 180, 94–105 (2016).

    Google Scholar 

  35. Heck, R.M., Farrauto, R.J. & Gulati, S. Catalytic Air Pollution Control: Commercial Technology, 3rd edn, Ch. 7 (Wiley, 2009).

  36. Kaspar, J., Fornasiero, P. & Hickey, N. Automotive catalytic converter current status and some perspective. Catal. Today 77, 419–449 (2003).

    Article  CAS  Google Scholar 

  37. Thomson, C. E., Mooney, J. J., Keith, C. D. & Mannion, W. A. Polyfunctional catalysts and method of use. US Patent 4,157,316 (1979)

  38. Hegedus, L & Summer, J.C. Platinum-rhodium for automotive emission control. US patent 4128506 (1978).

  39. Acres, G. J. K. & Cooper, B. J. Automobile emission control systems platinum catalysts for exhaust purification. Platin. Rev. 16, 74–86 (1972).

    CAS  Google Scholar 

  40. Hu, Z. et al. Performance and structure of Pt-Rh three-way catalysts: mechanism for Pt/Rh synergism. J. Catal. 174, 13–21 (1998).

    Article  CAS  Google Scholar 

  41. Hu, Z. A Pt-Rh synergism in Pt/Rh three-way catalysts. Chem. Commun. 7, 879–880 (1996).

    Article  Google Scholar 

  42. Shelef, M. & Graham, G. W. Why rhodium in automotive three-way catalysts. Cat. Rev. Sci. Eng. 36, 433–457 (1994).

    Article  CAS  Google Scholar 

  43. Kaspar, J. & Fornasiero, P. in Catalysis by Ceria and Related Materials (ed. A. Trovarelli) Vol. 2, 217–241 (Imperial College Press, 2002).

  44. Duprez, D. & Descorme, C. in Catalysis by Ceria and Related Materials (ed. A. Trovarelli) Vol. 2, 243–280 (Imperial College Press, 2002).

  45. Di Monte, R. et al. Thermal stabilization of CexZr1–xO2 oxygen storage promoters by addition of Al2O3: effect of thermal aging on textural, structural, and morphological properties. Chem. Mater. 16, 4273–4285 (2004).

    Article  Google Scholar 

  46. Sugiura, M., Ozawa, M., Suda, A., Suzuki, T. & Kanazawa, T. Development of innovative three-way catalysts containing ceria-zirconia solid solutions with high oxygen storage/release capacity. Bull. Chem. Soc. Jpn. 78, 752–767 (2005).

    Article  CAS  Google Scholar 

  47. Zhao, M., Shen, M. & Wang, J. Effect of surface area and bulk structure on oxygen storage capacity of Ce0.67Z 0.33O2. J. Catal. 248, 258–267 (2007).

    Article  CAS  Google Scholar 

  48. Si, R. et al. Enhanced thermal stability and oxygen storage capacity for CexZr1–xO2 (x=0.4-0.6) solid solutions by hydrothermally homogeneous doping of trivalent rare earths. J. Phys. Chem. 111, 787–794 (2007).

    CAS  Google Scholar 

  49. Kim, T., Vohs, J. M. & Gorte, R. J. Thermodynamic investigation of the redox properties of ceria-zirconia solid solutions. Ind. Eng. Chem. Res. 45, 5561–5565 (2006).

    Article  CAS  Google Scholar 

  50. Mussmann, L., Lindner, D., Harris, M., Kreuzer, T. & Lox, E. European patent 1,046 423 B1 (2007).

  51. Cuif, J. -P. et al. (Ce, Zr)O2 solid solutions for three-way catalysts. SAE Technical Papers https://doi.org/10.4271/970463 (1997).

  52. Cuif, J. -P. et al. High temperature stability of ceria-zirconia supported Pd model catalysts. SAE Technical Papers https://doi.org/10.4271/980668 (1998)

  53. Sugiura, M. Oxygen storage materials for automotive catalysts: ceria-zirconia solid solutions. Catal. Surv. Asia 7, 77–87 (2003).

    Article  CAS  Google Scholar 

  54. Fisher, G., Theis, J., Casarella, M. & Mahan, S. The role of ceria in automotive exhaust catalysis and OBD II catalyst monitoring. SAE Technical Papers https://doi.org/10.4271/931034 (1993).

  55. Kolli, T., Rahkamaa-Tolonen, K., Lassi, U., Savimäki, A. & Keiski, R. L. Influence of OSC material on the behaviour of metallic Pd catalysts in C2H4 and CO oxidation as well as in NO reduction. Top. Catal. 30/31, 341–346 (2004).

    Article  CAS  Google Scholar 

  56. Devaiah, D., Reddy, H. L., Park, S. E. & Reddy, B. M. Ceria-zirconia mixed oxides: synthetic methods and applications. Catal. Rev. 6, 177–277 (2018).

    Article  Google Scholar 

  57. Devaiah, D., Tsuzuki, T., Boningari, T., Smirniotis, P. G. & Reddy, B. M. CeMSn oxide (M=Hf, Zr, Pr, La) ternary oxide solid solutions with superior properties for CO oxidation. R. Soc. Chem. 5, 30275–30285 (2015).

    Google Scholar 

  58. Hepburn, J., Patel, K., Meneghel, M. & Ghandhi, H. Development of Pd-only three-way catalyst. SAE Technical Papers https://doi.org/10.4271/941058 (1994).

  59. Wang, J., Chen, H., Hu, Z., Yao, M. & Li, Y. A review on the Pd-based three-way catalyst. Catal. Rev. 57, 79–144 (2015).

    Article  CAS  Google Scholar 

  60. Dettling, J. & Lui, Y. A non-rhodium three-way catalyst for automotive applications. SAE Technical Papers https://doi.org/10.4271/920094 (1992).

  61. Yamada, T., Kayano, K. & Funabiki, M. Platinum metals-ceria synergism in auto exhaust catalysts. Stud. Surf. Sci. Catal. 77, 329–332 (1993).

    Article  CAS  Google Scholar 

  62. Matsuura, S., Hirai, A., Arimura, K. & Shinjoh, H. Development of three-way catalyst with using only Pd as activator. SAE Technical Papers https://doi.org/10.4271/950257 (1995).

  63. Lui, Y. & Dettling, J. Evolution of a Pd/Rh TWC catalyst technolog. SAE Technical Papers https://doi.org/10.4271/930249 (1993).

  64. Chen, S. -L. F., Sakakibara, J., Luo, T. & Rabinowitz, H. Layered catalyst composite. US patent 7758834 (2010).

  65. Deeba, M., Yipeng Sun, Y., Luo, T., Leung, E., Ruvinskiy, P. & Dang, D. Layered automotive catalyst composites. US patent 2018-0178198 (2018).

  66. Muraki, H. Performance of palladium automotive catalyst. SAE Technical Papers https://doi.org/10.4271/910842 (1975).

  67. Theis, J., Getsoian, A. & Lambert, C. The development of low temperature three-way catalysts for high efficiency gasoline engines of the future. SAE Int. J. Fuels Lubr. 10, 583–592 (2017).

    Article  Google Scholar 

  68. Twigg, M. V. Progress and future challenges in controlling automotive exhaust gas emission. Appl. Cataly. B. Environ. 70, 2–15 (2007).

    Article  CAS  Google Scholar 

  69. Twigg, M. V. Automotive exhaust emissions contro. Plat. Metal. Rev. 47, 157–162 (2003).

    CAS  Google Scholar 

  70. Hu, Z. & Heck, R. High temperature ultra stable close-coupled catalyst. SAE Technical Papers https://doi.org/950254 (1995).

  71. Hu, Z., Heck, R. & Rabinowitz, H. Close coupled catalyst. US Patent 6,044,644 (2000).

  72. Heck, R., Hu, Z., Smaling, R., Amundsen, A. & Bourke, M. Close coupled catalyst system design and ULEV performance after 1050oC Aging. SAE Technical Papers https://doi.org/10.4271/952415 (1995).

  73. Ball, D., Zammit, M. & Mitchell, G. Effects of substrate diameter and cell density on FTP performance. SAE Technical Papers https://doi.org/10.4271/2007-01-1265 (2007).

  74. Deeba, M. et al. Multilayered catalyst composites. US patent 7922988 (2011).

  75. Abe, F., Hashimoto, S. & Katsu, M. An extruded electrically heated catalyst: from design concept through proven reliability. SAE Technical Papers https://doi.org/10.4271/960340 (1996).

  76. Hanel, F., Otto, E., Bruck, R., Disinger, J. & Nagel, T. Practical experience with the EHC system in BMW alpina B 12. SAE Technical Papers https://doi.org/10.4271/970263 (1997).

  77. Migliardini, F., Domenico Caputo, F. & Corbo, P. MFI and FAU-type zeolites as trapping materials for light hydrocarbons emission control at low partial pressure and high temperature. J. Chem. https://doi.org/10.1155/2015/269694 (2015).

    Article  Google Scholar 

  78. Wilenmann, M., Favez, J. & Alvarez, R. Cold-start emissions of modern passenger cars at different low ambient temperatures and their evolution over vehicle legislation categories.”. Atmos. Environ. 43, 241–2429 (2009).

    Google Scholar 

  79. Lampert, J. K., Deeba, M., & Farrauto, R. J. Catalysed hydrocarbon trap material and method of making the same. US Patent 6074973A (2000)

  80. Xu, L., McCabe, R. W., Lupescu, J. A. Low temperature catalyst/hydrocarbon trap. US patent 944639B2 (2016)

  81. Hochmuth, J., Burk, P., Tolentino, C. & Mignano, M. Hydrocarbon traps for controlling cold start emissions. SAE Technical Papers https://doi.org/10.4271/930739 (1993).

  82. Luo, J., McCabe, R. W., Dearth, M. A. & Gorte, J. G. Transient adsorption studies of automotive hydrocarbon traps Reaction Engineering, Kinetics and catalysis. AIChE J. 60, 2875–2881 (2014).

    Article  CAS  Google Scholar 

  83. Heck, R., Hu, Z., Smaling, R., Amundsen, A. & Bourke, M. Close coupled catalyst system design and ULEV performance after 1050 ˚C aging. SAE Technical Papers https://doi.org/10.4271/952415 (1995).

  84. Otto, K., Montreuil, C. N., Todor, O., McCabe, R. W. & Gandhi, H. S. Adsorption of hydrocarbons and other exhaust components on silicalite. Ind. Eng. Chem. Res. 30, 2333–2340 (1991).

    Article  CAS  Google Scholar 

  85. Burke, N. R., Trimm, D. L. & Howe, R. F. The effect of silica-alumina ratio and hydrothermal aging on the adsorption characteristics of BEA zeolites for cold start emission control. Appl. Catal. B: Environ. 46, 97–104 (2003).

    Article  CAS  Google Scholar 

  86. Gu, Y. & Epling, W. Passive NOx adsorber: an overview of catalytic performance and reaction chemistry. Appl. Catal. A: Gen. 570, 1–14 (2019).

    Article  CAS  Google Scholar 

  87. Theis, J. R. & Lambert, C. The effects of CO, C2H4, and H2O on the NOx storage performance of low temperature NOx adsorbers for diesel applications. SAE Int. J. Eng. https://doi.org/10.4271/2017-01-0942 (2017).

    Article  Google Scholar 

  88. Ji, Y., Bai, S. & Crocker, M. Al2O3-based passive NOx adsorbers for low temperature applications. Appl. Catal. B. Environ. 170, 283–292 (2015).

    Article  Google Scholar 

  89. Ji, Y. et al. Pt and Pd-promoted CeO2–ZrO2 for passive NOx adsorber applications. Ind. Eng. Chem. Res. 56, 111–125 (2017).

    Article  CAS  Google Scholar 

  90. Heck, R. M., Hochmuth, J. K. & Dettling, J. C. Effect of oxygen concentration on aging of TWC catalyst. SAE Technical Papers https://doi.org/10.4271/920098 (1992).

  91. Brinkmeier, C., Schön, C., Vent, G. & Enderle, C. Catalyst temperature rise during deceleration with fuel cut. SAE Technical Papers https://doi.org/10.4271/01-0411 (2006).

  92. Bidner, D. et al. System and method to improve drivability with deceleration fuel shut off. US patent 7,591,758 (2009).

  93. Zheng, Q., Farrauto, R., Deeba, M. & Valsamakis, I. Part I: a comparative thermal aging study on the regenerability of Rh/Al2O3 and Rh/CexOy-ZrO2 as model catalysts for automotive three-way catalysts. Catalysts 5, 1770–1796 (2015).

    Article  CAS  Google Scholar 

  94. Zheng, Q., Farrauto, R. & Deeba, M. Part II: oxidative thermal aging of Pd/Al2O3 and Pd/CexOy-ZrO2 in automotive three-way catalysts: the effects of fuel shutoff and attempted fuel rich regeneration. Catalysis 5, 1797–1814 (2015).

    CAS  Google Scholar 

  95. Chincholkar, S. P. & Suryawanshi, J. G. Gasoline direct injection: an efficient technology. Energ. Proc. 90, 666–672 (2016).

    Article  Google Scholar 

  96. Singh, A. K., Lanjewar, A. M. & Rehman, A. Direct fuel injection system in gasoline engine – a review. Int. J. Innov. Technol. Exp. Eng. 4, (2014).

  97. Manuel, J. M., Ramos, G. & Wallace, J. S. Sources of particulate matter emissions variability from a gasoline direct injection engine. J. Eng. Gas. Turbines Power 140, 122805–122810 (2018).

    Article  Google Scholar 

  98. Roy, S. & Baiker, A. NOx storage-reduction catalysis: from mechanism and materials properties to storage- reduction performance. Chem. Rev. 109, 4054–4091 (2009).

    Article  CAS  Google Scholar 

  99. Forzatti, P., Lietti, L., Nova, I. & Tronconi, E. Diesel NOx after treatment catalytic technologies: analogies in LNT and SCR catalytic chemistry. Catal. Today 151, 202–211 (2010).

    Article  CAS  Google Scholar 

  100. Farrauto, R. J., Bartholomew, C. & Dorazio, L. in Introduction to Catalysis and Industrial Catalytic Processes Ch. 14 (Wiley, 2016).

  101. Wang, J., Zhao, H., Haller, G. & Li, Y. Recent advances in selective catalytic reduction of NOx with ammonia on Cu Chabazite. Appl. Catal. B. Environ. 202, 346–354 (2017).

    Article  CAS  Google Scholar 

  102. Pappas, D. K., Boningari, T., Boolchand, P. & Smirniotis, P. G. Novel manganese oxide confined interweaved titania nanotubes for the low temperature selective catalytic reduction of NOx by ammonia. J. Catal. 334, 1–3 (2016).

    Article  CAS  Google Scholar 

  103. Boningari, T. et al. Influence of elevated surface texture hydrated titania on Ce-doped Mn/titania catalysts for the low-temperature SCR of NOx under oxygen-rich conditions. J. Catal. 325, 146–155 (2015).

    Article  Google Scholar 

  104. Praveeno, V. & Martin, M. A review of various treatment techniques to reduce NOx in CI engines. J. Energy Inst. 91, 704–720 (2018).

    Article  Google Scholar 

  105. Lampert, J., Kazi, S. & Farrauto, R. J. Pd catalyst performance for methane emissions abatement from lean butane natural gas vehicles. Appl. Catal. B. Environ. 14, 211–223 (1997).

    Article  CAS  Google Scholar 

  106. Honkanen, M., Wang, J., Karkkainen, M., Huuhanen, M., Keiki, R. & Akola, J. Regeneration of sulfur-poisoned Pd based catalysts for natural gas oxidation. J. Catal. 358, 253–265 (2018).

    Article  CAS  Google Scholar 

  107. Zheng, Q. & Farrauto, R. In situ regeneration of Rhodium in three-way catalysts by aqueous ethanol injection for sustained methane emission abatement. Catal. Commun. 95, 61–66 (2017).

    Article  Google Scholar 

  108. Scott, A. Counting the ways to store renewable energy. Chem. Engin. News 96, 14–17 (2018).

    Google Scholar 

  109. Farrauto, R., Dorazio, L. & Bartholomew, C. in Introduction to Catalysis and Industrial Catalytic Processes Ch. 15 (Wiley, 2016).

  110. Rostrop-Nielson, J. R. in Catalysis, Science and Technology (eds. J. Anderson and M. Boudart), Ch. 1 (Springer, 1984)

  111. Farrauto, R. J. New catalysts and reactor designs for the hydrogen economy. Chem. Eng. J. 238, 172–177 (2014).

    Article  CAS  Google Scholar 

  112. Reisch, M. S. Air liquide plans H2 for energy market. Chem. Eng. News 3, 12 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert J. Farrauto, Michel Deeba or Saeed Alerasool.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farrauto, R.J., Deeba, M. & Alerasool, S. Gasoline automobile catalysis and its historical journey to cleaner air. Nat Catal 2, 603–613 (2019). https://doi.org/10.1038/s41929-019-0312-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0312-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing