Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A multicomponent synthesis of stereodefined olefins via nickel catalysis and single electron/triplet energy transfer


Unsaturated carbon–carbon bonds are one of the most common and important structural motifs in many organic molecules, stimulating the continuous development of general, efficient and practical strategies for their functionalization. Here, we report a one-pot difunctionalization of alkynes via a photoredox/nickel dual-catalysed three-component cross-coupling reaction under mild conditions, providing access to a series of highly important tri-substituted alkenes. Notably, in contrast to traditional methods that are based on the steric hindrance of the substrates to control the reaction selectivity, both E- and Z-isomers of tri-substituted alkenes, which are often energetically close, can be obtained by choosing an appropriate photocatalyst with a suitable triplet state energy. Beyond the immediate practicality of this transformation, this newly developed methodology might inspire the development of diverse and important one-pot functionalizations of carbon–carbon multiple bonds via photoredox and transition-metal dual-catalysed multicomponent reactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Multicomponent cross-coupling reaction under mild conditions and its main challenges.
Fig. 2: Mechanistic design of the newly developed three-component reaction.
Fig. 3: Substrate scope of aryl halides and alkynes for the photoredox/nickel dual-catalysed aryl-sulfonylation of alkynes using Ru photocatalyst 3.
Fig. 4: Substrate scope of sodium sulfinates and complex molecules for the photoredox/nickel dual catalysed aryl-sulfonylation of alkynes using Ru photocatalyst 3.
Fig. 5: Substrate scope for the photoredox/nickel dual-catalysed aryl-sulfonylation of alkynes using Ir photocatalyst 2.
Fig. 6: Gram-scale reactions and applications.
Fig. 7: Mechanistic investigations.
Fig. 8: Computational investigation of the nickel catalytic cycle.

Data availability

The X-ray crystallographic coordinates for structures of 5 and 87 reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers CCDC 1914140 (5) and 1914141 (87). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via Experimental procedures and characterization of the new compounds are available in the Supplementary Information. All other data are available from the authors upon reasonable request.


  1. 1.

    Tietze, L. F. & Modi, A. Multicomponent domino reactions for the synthesis of biologically active natural products and drugs. Med. Res. Rev. 20, 304–322 (2000).

    CAS  Article  Google Scholar 

  2. 2.

    Masson, G., Neuville, L., Bughin, C., Fayol, A. & Zhu, J. Multicomponent syntheses of macrocycles. Top. Heterocycl. Chem. 25, 1–24 (2000).

    Google Scholar 

  3. 3.

    Domling, A., Wang, W. & Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev. 112, 3083–3135 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    Levi, L. & Müller, T. J. J. Multicomponent syntheses of functional chromophores. Chem. Soc. Rev. 45, 2825–2846 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    Zhu, J., Wang, Q. & Wang, M.-X. (eds) Multicomponent Reactions in Organic Synthesis (Wiley, Hoboken, 2015).

  6. 6.

    Müller, T. J. J. & Deilhof, K. in Multicomponent Synthesis of Heterocycles in Multicomponent Reactions in Organic Synthesis (eds Zhu, J., Wang, Q. & Wang, M.-X.) 333–378 (Wiley, Hoboken, 2015).

  7. 7.

    Xue, F., Zhao, J., Hor, T. S. A. & Hayashi, T. Nickel-catalyzed three-component domino reactions of aryl Grignard reagents, alkynes and aryl halides producing tetrasubstituted alkenes. J. Am. Chem. Soc. 137, 3189–3192 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Satoh, T., Ogino, S., Miura, M. & Nomura, M. Synthesis of highly substituted 1,3-butadienes by palladium-catalyzed arylation of internal alkynes. Angew. Chem. Int. Ed. 43, 5063–5065 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    Kischkewitz, M., Okamoto, K., Mück-Lichtenfeld, C. & Studer, A. Radical-polar crossover reactions of vinylboron ate complexes. Science 355, 936–938 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Lu, Q. et al. Dioxygen-triggered oxidative radical reaction: direct aerobic difunctionalization of terminal alkynes toward β-keto sulfones. J. Am. Chem. Soc. 135, 11481–11484 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    García-Domínguez, A., Müller, S. & Nevado, C. Nickel-catalyzed intermolecular carbosulfonylation of alkynes via sulfonyl radicals. Angew. Chem. Int. Ed. 56, 9949–9952 (2017).

    Article  Google Scholar 

  12. 12.

    Li, Z., Garcia-Dominguez, A. & Nevado, C. Nickel-catalyzed stereoselective dicarbofunctionalization of alkynes. Angew. Chem. Int. Ed. 55, 6938–6941 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Li, Z., Garcia-Dominguez, A. & Nevado, C. Pd-catalyzed stereoselective carboperfluoroalkylation of alkynes. J. Am. Chem. Soc. 137, 11610–11613 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Derosa, J., Tran, V. T., Boulous, M. N., Chen, J. S. & Engle, K. M. Nickel-catalyzed β,γ-dicarbofunctionalization of alkenyl carbonyl compounds via conjunctive cross-coupling. J. Am. Chem. Soc. 139, 10657–10660 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Marzo, L., Pagire, S. K., Reiser, O. & König, B. Visible-light photocatalysis: does it make a difference in organic synthesis? Angew. Chem. Int. Ed. 57, 10034–10072 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Ye, J. H. et al. Visible-light-driven iron-promoted thiocarboxylation of styrenes and acrylates with CO2. Angew. Chem. Int. Ed. 56, 15416–15420 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Koike, T. & Akita, M. Fine design of photoredox systems for catalytic fluoromethylation of carbon–carbon multiple bonds. Acc. Chem. Res. 49, 1937–1945 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Metternich, J. B. & Gilmour, R. A bio-inspired, catalytic E → Z isomerization of activated olefins. J. Am. Chem. Soc. 137, 11254–11257 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Zuo, Z. et al. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp 3-carbons with aryl halides. Science 345, 437–440 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Tellis, J. C., Primer, D. N. & Molander, G. A. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 345, 433–436 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Twilton, J., Zhang, P., Shaw, M. H., Evans, R. W. & MacMillan, D. W. C. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Matsui, J. K., Lang, S. B., Heitz, D. R. & Molander, G. A. Photoredox-mediated routes to radicals: the value of catalytic radical generation in synthetic methods development. ACS Catal. 7, 2563–2575 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Wang, H. et al. Markovnikov-selective radical addition of S-nucleophiles to terminal alkynes through a photoredox process. Angew. Chem. Int. Ed. 56, 595–599 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Yue, H., Zhu, C. & Rueping, M. Cross-coupling of sodium sulfinates with aryl, heteroaryl and vinyl halides by nickel/photoredox dual catalysis. Angew. Chem. Int. Ed. 57, 1371–1375 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    Deng, H.-P., Fan, X.-Z., Chen, Z.-H., Xu, Q.-H. & Wu, J. Photoinduced nickel-catalyzed chemo- and regioselective hydroalkylation of internal alkynes with ether and amide α-hetero C(sp 3)–H bonds. J. Am. Chem. Soc. 139, 13579–13584 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Go, S. Y., Lee, G. S. & Hong, S. H. Highly regioselective and E/Z-selective hydroalkylation of ynone, ynoate and ynamide via photoredox mediated Ni/Ir dual catalysis. Org. Lett. 20, 4691–4694 (2018).

    CAS  Article  Google Scholar 

  27. 27.

    Singh, K., Staig, S. J. & Weaver, J. D. Facile synthesis of Z-alkenes via uphill catalysis. J. Am. Chem. Soc. 136, 5275–5278 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Fabry, D. C., Ronge, M. A. & Magnus, R. Immobilization and continuous recycling of photoredox catalysts in ionic liquids for applications in batch reactions and flow systems: catalytic alkene isomerization by using visible light. Chem. Eur. J. 21, 5350–5354 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Wei, X.-J., Boon, W., Hessel, V. & Noël, T. Visible-light photocatalytic decarboxylation of α,β-unsaturated carboxylic acids: facile access to stereoselective difluoromethylated styrenes in batch and flow. ACS Catal. 7, 7136–7140 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Wu, J., Grant, P. S., Li, X., Noble, A. & Aggarwal, V. K. Catalyst-free deaminative functionalizations of primary amines by photoinduced single-electron transfer. Angew. Chem. Int. Ed. 58, 5697–5701 (2019).

    CAS  Article  Google Scholar 

  31. 31.

    Noble, A. & MacMillan, D. W. C. Photoredox α-vinylation of α-amino acids and N-aryl amines. J. Am. Chem. Soc. 136, 11602–11605 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    Gutierrez, O., Tellis, J. C., Primer, D. N., Molander, G. A. & Kozlowski, M. C. Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings. J. Am. Chem. Soc. 137, 4896–4899 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Oderinde, M. S. et al. Highly chemoselective iridium photoredox and nickel catalysis for the cross-coupling of primary aryl amines with aryl halides. Angew. Chem. Int. Ed. 55, 13219–13223 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Oderinde, M. S., Frenette, M., Robbins, D. W., Aquila, B. & Johannes, J. W. Photoredox mediated nickel catalyzed cross-coupling of thiols with aryl and heteroaryl iodides via thiyl radicals. J. Am. Chem. Soc. 138, 1760–1763 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Frisch, M. J. et al. Gaussian 09, revision D.01 (Gaussian, 2013).

  36. 36.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  37. 37.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997).

    CAS  Article  Google Scholar 

  38. 38.

    Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    CAS  Article  Google Scholar 

  39. 39.

    Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).

    CAS  Article  Google Scholar 

  40. 40.

    Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    CAS  Article  Google Scholar 

  41. 41.

    Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    CAS  Article  Google Scholar 

  42. 42.

    Kelly, C. P., Cramer, C. J. & Truhlar, D. G. SM6: a density functional theory continuum solvation model for calculating aqueous solvation free energies of neutrals, ions and solute–water clusters. J. Chem. Theory Comput. 1, 1133–1152 (2005).

    CAS  Article  Google Scholar 

  43. 43.

    Kelly, C. P., Cramer, C. J. & Truhlar, D. G. Aqueous solvation free energies of ions and ion–water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J. Phys. Chem. B 110, 16066–16081 (2006).

    CAS  Article  Google Scholar 

  44. 44.

    Glendening, E. D., Reed, A. E., Carpenter, J. E. & Weinhold, F. NBO version 3.1 (Theoretical Chemistry Institute, 1998).

  45. 45.

    Reed, A. E., Curtiss, L. A. & Weinhold, F. Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem. Rev. 88, 899–926 (1988).

    CAS  Article  Google Scholar 

  46. 46.

    Legault, C. Y. CYLview 1.0b (Unversité de Sherbrooke, 2009);

  47. 47.

    Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyser. J. Comput. Chem. 33, 580–592 (2012).

    Article  Google Scholar 

Download references


The authors thank D. Wöll and O. Nevskyi for assistance with measuring the emission spectra of the photocatalysts. H.Y. thanks the China Scholarship Council. C.Z., B.M., L.C. and M.R. acknowledge King Abdullah University of Science and Technology (KAUST) for support and the KAUST Supercomputing Laboratory for providing computational resources of the supercomputer Shaheen II. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) and ERC grant agreement no. 617044 (SunCatChem).

Author information




C.Z., H.Y. and M.R. conceived and designed the experiments. C.Z. and H.Y. performed and analysed the experiments. I.A. conducted X-ray crystal structure analysis. C.Z., B.M. and L.C. performed the theoretical calculations. All authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Luigi Cavallo or Magnus Rueping.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Supplementary Figs. 1–19, Supplementary Tables 1–7, Supplementary references

Supplementary Data 1

Cartesian coordinates and energies of calculated structures

Compound 5

Crystallographic data for compound 5

Compound 87

Crystallographic data for compound 87

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Yue, H., Maity, B. et al. A multicomponent synthesis of stereodefined olefins via nickel catalysis and single electron/triplet energy transfer. Nat Catal 2, 678–687 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing