Cooperative copper centres in a metal–organic framework for selective conversion of CO2 to ethanol


Selective conversion of CO2 to ethanol is of great interest but presents a significant challenge in forming a C–C bond while keeping a C–O bond intact throughout the process. Here, we report cooperative CuI sites on a Zr12 cluster of a metal–organic framework (MOF) for selective hydrogenation of CO2 to ethanol. With the assistance of an alkali cation, the spatially proximate Zr12-supported CuI centres activate hydrogen via bimetallic oxidative addition and promote C–C coupling to produce ethanol. The Cs+-modified MOF catalyst, in 10 hours, produces ethanol with >99% selectivity and a turnover number (based on all Cu atoms) of 4,080 in supercritical CO2, with 30 MPa of CO2 and 5 MPa of H2 at 85 °C, or a turnover number of 490 at 2 MPa of CO2/H2 (1/3) and 100 °C. Our work highlights the potential of using MOFs as a tunable platform to design earth-abundant metal catalysts for CO2 conversion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic showing Cu supported on ZrO2 and Zr12-SBU in a MOF for CO2 hydrogenation.
Fig. 2: Synthesis and structures of Zr12-bpdc and Zr12-bpdc-CuLi catalysts.
Fig. 3: Characterization of alkali metal-modified Zr12-bpdc-Cu catalysts.
Fig. 4: Catalytic performance in CO2 hydrogenation.
Fig. 5: Isotope labelling experiments.
Fig. 6: Proposed mechanism of methanol and ethanol synthesis from CO2 hydrogenation over Zr12-bpdc-Cu catalysts.

Data availability

All the data that support the findings of this study are available within the paper and its Supplementary Information files, or from the corresponding author on reasonable request.


  1. 1.

    Kargari, A. & Ravanchi, M. in Greenhouse Gases: Capturing, Utilization and Reduction 1–30 (IntechOpen, 2012).

  2. 2.

    Álvarez, A. et al. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem. Rev. 117, 9804–9838 (2017).

    Article  Google Scholar 

  3. 3.

    Gao, P. et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 9, 1019–1024 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Cabrero-Antonino, J. R., Adam, O. R. & Beller, M. Catalytic reductive N-alkylations using CO2 and carboxylic acid derivatives: recent progress and developments. Angew. Chem. Int. Ed. (2018).

  5. 5.

    Olah, G. A., Goeppert, A. & Prakash, G. K. S. in Beyond Oil and Gas: The Methanol Economy 233–278 (Wiley, 2009).

  6. 6.

    Langeslay, R. R. et al. Catalytic applications of vanadium: a mechanistic perspective. Chem. Rev. 119, 2128–2191 (2019).

    CAS  Article  Google Scholar 

  7. 7.

    Goldemberg, J. Ethanol for a sustainable energy future. Science 315, 808–810 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    Farrell, A. E. et al. Ethanol can contribute to energy and environmental goals. Science 311, 506–508 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    Prieto, G. et al. Design and synthesis of copper–cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols. Angew. Chem. Int. Ed. 53, 6397–6401 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Sun, J. et al. Promotional effects of cesium promoter on higher alcohol synthesis from syngas over cesium-promoted Cu/ZnO/Al2O3 catalysts. ACS Catal. 6, 5771–5785 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Zhang, R., Wang, G. & Wang, B. Insights into the mechanism of ethanol formation from syngas on Cu and an expanded prediction of improved Cu-based catalyst. J. Catal. 305, 238–255 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Kauffman, D. R. & Alfonso, D. Directing CO2 conversion with copper nanoneedles. Nat. Catal. 1, 99 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Cao, A. et al. Growing layered double hydroxides on CNTs and their catalytic performance for higher alcohol synthesis from syngas. J. Mater. Sci. 51, 5216–5231 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Liu, Y., Murata, K., Inaba, M., Takahara, I. & Okabe, K. Synthesis of mixed alcohols from syngas over Cs-modified Cu/Ce1 - xZrxO2 catalysts. J. Jpn Pet. Inst. 53, 153–159 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    Pan, X. et al. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat. Mater. 6, 507–511 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    He, Z. et al. Water-enhanced synthesis of higher alcohols from CO2 hydrogenation over a Pt/Co3O4 catalyst under milder conditions. Angew. Chem. Int. Ed. 55, 737–741 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Bai, S. et al. Highly active and selective hydrogenation of CO2 to ethanol by ordered Pd–Cu nanoparticles. J. Am. Chem. Soc. 139, 6827–6830 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Gong, J. et al. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0–Cu+ sites. J. Am. Chem. Soc. 134, 13922–13925 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    Anton, J. et al. The effect of sodium on the structure–activity relationships of cobalt-modified Cu/ZnO/Al2O3 catalysts applied in the hydrogenation of carbon monoxide to higher alcohols. J. Catal. 335, 175–186 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Lopez, L. et al. Syngas conversion to ethanol over a mesoporous Cu/MCM-41 catalyst: effect of K and Fe promoters. Appl. Catal. A Gen. 526, 77–83 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Angamuthu, R., Byers, P., Lutz, M., Spek, A. L. & Bouwman, E. Electrocatalytic CO2 conversion to oxalate by a copper complex. Science 327, 313–315 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    Gnanamani, M. K. et al. Hydrogenation of carbon dioxide over K-promoted FeCo bimetallic catalysts prepared from mixed metal oxalates. ChemCatChem 9, 1303–1312 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Xu, M. & Iglesia, E. Carbon–carbon bond formation pathways in Co hydrogenation to higher alcohols. J. Catal. 188, 125–131 (1999).

    CAS  Article  Google Scholar 

  24. 24.

    Burcham, M. M., Herman, R. G. & Klier, K. Higher alcohol synthesis over double bed Cs−Cu/ZnO/Cr2O3 catalysts: optimizing the yields of 2-methyl-1-propanol (isobutanol). Ind. Eng. Chem. Res. 37, 4657–4668 (1998).

    CAS  Article  Google Scholar 

  25. 25.

    Zhao, M. et al. Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature 539, 76–80 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Diercks, C. S., Liu, Y., Cordova, K. E. & Yaghi, O. M. The role of reticular chemistry in the design of CO2 reduction catalysts. Nat. Mater. 17, 301–307 (2018).

    CAS  Article  Google Scholar 

  27. 27.

    Fei, H. et al. Reusable oxidation catalysis using metal-monocatecholato species in a robust metal–organic framework. J. Am. Chem. Soc. 136, 4965–4973 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Metzger, E. D., Brozek, C. K., Comito, R. J. & Dincă, M. Selective dimerization of ethylene to 1-butene with a porous catalyst. ACS Cent. Sci. 2, 148–153 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Valvekens, P., Vermoortele, F. & De Vos, D. Metal–organic frameworks as catalysts: the role of metal active sites. Catal. Sci. Technol. 3, 1435–1445 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    Wu, C.-D. & Lin, W. Highly porous, homochiral metal–organic frameworks: solvent-exchange-induced single-crystal to single-crystal transformations. Angew. Chem. Int. Ed. 44, 1958–1961 (2005).

    CAS  Article  Google Scholar 

  31. 31.

    Chambers, M. B. et al. Photocatalytic carbon dioxide reduction with rhodium-based catalysts in solution and heterogenized within metal–organic frameworks. ChemSusChem 8, 603–608 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Yang, D. et al. Metal–organic framework nodes as nearly ideal supports for molecular catalysts: NU-1000- and UiO-66-supported iridium complexes. J. Am. Chem. Soc. 137, 7391–7396 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Ji, P. et al. Single-site cobalt catalysts at new Zr123-O)83-OH)82-OH)6 metal–organic framework nodes for highly active hydrogenation of nitroarenes, nitriles and isocyanides. J. Am. Chem. Soc. 139, 7004–7011 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    Manna, K. et al. Chemoselective single-site earth-abundant metal catalysts at metal–organic framework nodes. Nat. Commun. 7, 12610 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Ji, P. et al. Single-site cobalt catalysts at new Zr82-O)82-OH)4 metal–organic framework nodes for highly active hydrogenation of alkenes, imines, carbonyls and heterocycles. J. Am. Chem. Soc. 138, 12234–12242 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Guo, Z. et al. A metal–organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature. Angew. Chem. Int. Ed. 50, 3178–3181 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    Dai, R. et al. Electron crystallography reveals atomic structures of metal–organic nanoplates with M123-O)83-OH)82-OH)6 (M = Zr, Hf) secondary building units. Inorg. Chem. 56, 8128–8134 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    Cavka, J. H. et al. A new zirconium inorganic building brick forming metal–organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    Article  Google Scholar 

  39. 39.

    Ikuno, T. et al. Methane oxidation to methanol catalyzed by Cu-Oxo clusters stabilized in NU-1000 metal–organic framework. J. Am. Chem. Soc. 139, 10294–10301 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    An, B. et al. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal–organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J. Am. Chem. Soc. 139, 3834–3840 (2017).

    CAS  Article  Google Scholar 

  41. 41.

    Ji, P. et al. Cerium-hydride secondary building units in a porous metal–organic framework for catalytic hydroboration and hydrophosphination. J. Am. Chem. Soc. 138, 14860–14863 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Ji, P. et al. Transformation of metal–organic framework secondary building units into hexanuclear Zr-alkyl catalysts for ethylene polymerization. J. Am. Chem. Soc. 139, 11325–11328 (2017).

    CAS  Article  Google Scholar 

  43. 43.

    Texter, J., Strome, D., Herman, R. & Klier, K. Chemical and spectroscopic properties of copper containing zeolites. J. Phys. Chem. 81, 333–338 (1977).

    CAS  Article  Google Scholar 

  44. 44.

    Chen, Y.-Z. et al. Multifunctional PdAg@MIL-101 for one-pot cascade reactions: combination of host–guest cooperation and bimetallic synergy in catalysis. ACS Catal. 5, 2062–2069 (2015).

    CAS  Article  Google Scholar 

  45. 45.

    Nunan, J. G. et al. Methanol and C2 oxygenate synthesis over cesium doped CuZnO and Cu/ZnO/Al2O3 catalysts: a study of selectivity and 13C incorporation patterns. J. Catal. 113, 410–433 (1988).

    CAS  Article  Google Scholar 

  46. 46.

    Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).

    CAS  Article  Google Scholar 

  47. 47.

    Rehr, J. J. & Albers, R. C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654 (2000).

    CAS  Article  Google Scholar 

  48. 48.

    Frisch, M. J. et al. Gaussian 09, Revision E.01 (Gaussian, 2016).

  49. 49.

    Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).

    CAS  Article  Google Scholar 

  50. 50.

    Lee, C. T., Yang, W. T. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    CAS  Article  Google Scholar 

Download references


The authors thank C. Wang and Z. Lin for advice on isotopic mass-spectrometric analysis, K. Cheng and J. Lei (from Xiamen HanDe Engineering Co.) for experimental and equipment help, P. Ji for XAFS data collection and Q. Li for 3Li NMR tests. The authors acknowledge funding support from the Ministry of Science and Technology of China (2016YFA0200702) and the National Natural Science Foundation of China (21671162, 21471126 and 21721001). XAS analysis was performed at Beamline 10-BM of the Advanced Photon Source (APS), Argonne National Laboratory (ANL). Use of the APS, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under contract no. DE-AC02-06CH11357.

Author information




B.A., C.W. and W.L. conceived and designed the project. B.A., Z.L., Y.S. and J.Z. carried out the synthesis of the materials, characterized the materials and analysed the data. B.A. performed the high-throughput catalysis with the help of L.Z., while Z.L. performed the theoretical calculations. B.A. and Z.L. performed the experiments investigating the catalytic cycle, under the supervision of C.W. All authors discussed the results and commented on the manuscript. B.A., Z.L., C.W. and W.L. wrote the manuscript.

Corresponding author

Correspondence to Cheng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary information

Supplementary methods, Supplementary Figs. 1–58, Supplementary Tables 1–11, Supplementary Notes 1-3, Supplementary references

Supplementary Data Set

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

An, B., Li, Z., Song, Y. et al. Cooperative copper centres in a metal–organic framework for selective conversion of CO2 to ethanol. Nat Catal 2, 709–717 (2019).

Download citation

Further reading