Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Highly active enzyme–metal nanohybrids synthesized in protein–polymer conjugates

Abstract

Building a bridge between enzymatic and heterogeneous catalysis provides new cascade industrial processes for manufacturing. However, the reaction conditions of enzymatic and heterogeneous catalysis mutually cause deactivation of catalysts. Here, we overcame this challenge by developing a special protocol for the synthesis of hybrid catalysts. We utilized protein–polymer nanoconjugates as confined nanoreactors for the in situ synthesis of lipase–palladium (Pd) nanohybrids. The 0.8 nm Pd nanoparticles exhibited increased activity in racemization of (S)-1-phenylethylamine. At 55 °C, which matches the optimum temperature of lipase, the activity is more than 50 times that of commercial Pd/C. It was found that the Pd–O coordination in Pd subnanoclusters contributed to the high activity. In the dynamic kinetic resolutions of pharmaceutical intermediates (±)-1-phenylethylamine, (±)-1-aminoindan and (±)-1,2,3,4-tetrahydro-1-naphthylamine, the lipase–Pd nanohybrids displayed 7.6, 3.1 and 5.0 times higher efficiencies than the combination of commercial immobilized lipase Novozym 435 and Pd/C. The lipase–Pd nanohybrids can be reused without agglomeration and activity loss.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Fabrication and characterization of Pd/CALB-P nanohybrids.
Fig. 2: Size and activity of Pd/CALB-P nanohybrids.
Fig. 3: Analysis of the coordination of Pd.
Fig. 4: Theoretical modelling of the origin of the high activity of Pd subnanoclusters in Pd/CALB-P.
Fig. 5: The catalytic performance and reusability of 0.8Pd/CALB-P nanohybrids for the DKR of 1-PEA.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon request.

References

  1. 1.

    Ye, R., Zhao, J., Wickemeyer, B. B., Toste, F. D. & Somorjai, G. A. Foundations and strategies of the construction of hybrid catalysts for optimized performances. Nat. Catal. 1, 318–325 (2018).

    Article  Google Scholar 

  2. 2.

    Litman, Z., Wang, Y., Zhao, H. & Hartwig, J. F. Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis. Nature 560, 355–359 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    Dydio, P. et al. An artificial metalloenzyme with the kinetics of native enzymes. Science 354, 102–106 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Verho, O. & Bäckvall, J. E. Chemoenzymatic dynamic kinetic resolution: a powerful tool for the preparation of enantiomerically pure alcohols and amines. J. Am. Chem. Soc. 137, 3996–4009 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Efrati, A. et al. Assembly of photo-bioelectrochemical cells using photosystem I-functionalized electrodes. Nat. Energy 1, 15021–15027 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Zhang, H. et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol. 13, 900–905 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Rudroff, F. et al. Opportunities and challenges for combining chemo- and biocatalysis. Nat. Catal. 1, 12–22 (2018).

    Article  Google Scholar 

  8. 8.

    Denard, C. A. et al. Cooperative tandem catalysis by an organometallic complex and a metalloenzyme. Angew. Chem. Int. Ed. 126, 475–479 (2014).

    Article  Google Scholar 

  9. 9.

    Denard, C. A., Hartwig, J. F. & Zhao, H. Multistep one-pot reactions combining biocatalysts and chemical catalysts for asymmetric synthesis. ACS Catal. 3, 2856–2864 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Groeger, H. & Hummel, W. Combining the ‘two worlds’ of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media. Curr. Opin. Chem. Biol. 19, 171–179 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Fu, H. et al. Chemoenzymatic asymmetric synthesis of the metallo-β-lactamase inhibitor aspergillomarasmine A and related aminocarboxylic acids. Nat. Catal. 1, 186–191 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Reetz, M. T. & Schimossek, K. Lipase-catalyzed dynamic kinetic resolution of chiral amines: use of palladium as the racemization catalyst. CHIMIA 50, 668–669 (1996).

    CAS  Google Scholar 

  13. 13.

    Engström, K. et al. Co-immobilization of an enzyme and a metal into the compartments of mesoporous silica for cooperative tandem catalysis: an artificial metalloenzyme. Angew. Chem. Int. Ed. 52, 14006–14010 (2013).

    Article  Google Scholar 

  14. 14.

    Kim, M. J. et al. Dynamic kinetic resolution of primary amines with a recyclable Pd nanocatalyst for racemization. Org. Lett. 9, 1157–1159 (2007).

    Article  Google Scholar 

  15. 15.

    Paetzold, J. & Bäckvall, J. E. Chemoenzymatic dynamic kinetic resolution of primary amines. J. Am. Chem. Soc. 127, 17620–17621 (2005).

    CAS  Article  Google Scholar 

  16. 16.

    Thalén, L. K. et al. A chemoenzymatic approach to enantiomerically pure amines using dynamic kinetic resolution: application to the synthesis of norsertraline. Chem. Eur. J. 15, 3403–3410 (2009).

    Article  Google Scholar 

  17. 17.

    Parvulescu, A. N., Jacobs, P. A. & De Vos, D. E. Heterogeneous Raney nickel and cobalt catalysts for racemization and dynamic kinetic resolution of amines. Adv. Synth. Catal. 350, 113–121 (2008).

    CAS  Article  Google Scholar 

  18. 18.

    Blacker, A. J., Stirling, M. J. & Page, M. I. Catalytic racemisation of chiral amines and application in dynamic kinetic resolution. Org. Process. Res. Dev. 11, 642–648 (2007).

    CAS  Article  Google Scholar 

  19. 19.

    Strohmeier, G. A. et al. Application of designed enzymes in organic synthesis. Chem. Rev. 111, 4141–4164 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    Renata, H., Wang, Z. J. & Arnold, F. H. Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Angew. Chem. Int. Ed. 54, 3351–3367 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Sheldon, R. A. & van Pelt, S. Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soc. Rev. 42, 6223–6235 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    Zhu, J. et al. Temperature-responsive enzyme–polymer nanoconjugates with enhanced catalytic activities in organic media. Chem. Commun. 49, 6090–6092 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    J. Thiele, M. et al. Enzyme–polyelectrolyte complexes boost the catalytic performance of enzymes. ACS Catal. 8, 10876–10887 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    vander Straeten, A. et al. Protein–polyelectrolyte complexes to improve the biological activity of proteins in layer-by-layer assemblies. Nanoscale 9, 17186–17192 (2017).

    Article  Google Scholar 

  25. 25.

    Zhang, Y., Wang, Q. & Hess, H. Increasing enzyme cascade throughput by pH-engineering the microenvironment of individual enzymes. ACS Catal. 7, 2047–2051 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Cheng, H. et al. Combination cancer treatment through photothermally controlled release of selenous acid from gold nanocages. Biomaterials 178, 517–526 (2018).

    CAS  Article  Google Scholar 

  27. 27.

    Gustafson, K. P., Lihammar, R., Verho, O., Engström, K. & Bäckvall, J. E. Chemoenzymatic dynamic kinetic resolution of primary amines using a recyclable palladium nanoparticle catalyst together with lipases. J. Org. Chem. 79, 3747–3751 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Xu, G., Dai, X., Fu, S., Wu, J. & Yang, L. Efficient dynamic kinetic resolution of arylamines with Pd/layered double-hydroxide-dodecyl sulfate anion for racemization. Tetrahedron Lett. 55, 397–402 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Vasan, H. N. & Rao, C. N. R. Nanoscale Ag–Pd and Cu–Pd alloys. J. Mater. Chem. 5, 1755–1757 (1995).

    CAS  Article  Google Scholar 

  30. 30.

    Ayyappan, S. et al. Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts. J. Mater. Res. 12, 398–401 (1997).

    CAS  Article  Google Scholar 

  31. 31.

    Xie, J., Zheng, Y. & Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 131, 888–889 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    Tan, Y. N., Lee, J. Y. & Wang, D. I. C. Uncovering the design rules for peptide synthesis of metal nanoparticles. J. Am. Chem. Soc. 132, 5677–5686 (2010).

    CAS  Article  Google Scholar 

  33. 33.

    Selvakannan, P. R. et al. Capping of gold nanoparticles by the amino acid lysine renders them water-dispersible. Langmuir 19, 3545–3549 (2003).

    CAS  Article  Google Scholar 

  34. 34.

    Filice, M., Marciello, M., del Puerto Morales, M. & Palomo, J. M. Synthesis of heterogeneous enzyme–metal nanoparticle biohybrids in aqueous media and their applications in C–C bond formation and tandem catalysis. Chem. Commun. 49, 6876–6878 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    Görbe, T. et al. Design of a Pd(0)–CalB CLEA biohybrid catalyst and its application in a one-pot cascade reaction. ACS Catal. 7, 1601–1605 (2017).

    Article  Google Scholar 

  36. 36.

    Schüth, F., Ward, M. D. & Buriak, J. M. Common pitfalls of catalysis manuscripts submitted to chemistry of materials. Chem. Mater. 30, 3599–3600 (2018).

    Article  Google Scholar 

  37. 37.

    Yu, H. et al. The XAFS beamline of SSRF. Nucl. Sci. Technol. 26, 050102 (2015).

    Google Scholar 

  38. 38.

    Lee, J. H. et al. Chemoenzymatic dynamic kinetic resolution of alcohols and amines. Eur. J. Org. Chem. 2010, 999–1015 (2010).

    Article  Google Scholar 

  39. 39.

    Eigtved, P. Immobilization of lipase by adsorption on a particulate macroporous. US patent No. 5,156,963 (1992).

  40. 40.

    Adlercreutz, P. Immobilisation and application of lipases in organic media. Chem. Soc. Rev. 42, 6406–6436 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    Zaks, A. & Klibanov, A. M. The effect of water on enzyme action in organic media. J. Biol. Chem. 263, 8017–8021 (1988).

    CAS  PubMed  Google Scholar 

  42. 42.

    Wu, X., Yang, C. & Ge, J. Green synthesis of enzyme/metal–organic framework composites with high stability in protein denaturing solvents. Bioresour. Bioproc. 4, 24 (2017).

    Article  Google Scholar 

  43. 43.

    Parvulescu, A., De Vos, D. & Jacobs, P. Efficient dynamic kinetic resolution of secondary amines with Pd on alkaline earth salts and a lipase. Chem. Commun. 42, 5307–5309 (2005).

    Article  Google Scholar 

  44. 44.

    Parvulescu, A. N., Jacobs, P. A. & De Vos, D. E. Palladium catalysts on alkaline-earth supports for racemization and dynamic kinetic resolution of benzylic amines. Chem. Eur. J. 13, 2034–2043 (2007).

    CAS  Article  Google Scholar 

  45. 45.

    Jin, Q. et al. Modification of supported Pd catalysts by alkalic salts in the selective racemization and dynamic kinetic resolution of primary amines. Catal. Sci. Technol. 4, 464–471 (2014).

    CAS  Article  Google Scholar 

  46. 46.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Article  Google Scholar 

  47. 47.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  48. 48.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  49. 49.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  50. 50.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Plan of China (2016YFA0204300), the National Natural Science Foundation of China (21622603, 21878174 and 51573085) and the Beijing Natural Science Foundation (JQ18006). The authors thank beamline BL14W1 (Shanghai Synchrotron Radiation Facility) for providing the beam time.

Author information

Affiliations

Authors

Contributions

J.G., H.X. and R.N.Z. supervised the project. J.G. and X.L. conceived the idea. X.L. performed the experiments with technical help from Y.S. and J.X. Y.C performed the calculations. K.L. performed the mass spectra analyses. J.M., Z.L. and J.L. participated in analysing the results. X.L., L.W., J.G., H.X. and R.N.Z. co-wrote the paper.

Corresponding authors

Correspondence to Jun Ge or Hai Xiao or Richard N. Zare.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Methods, Supplementary Tables 1–10, Supplementary Figs. 1–52 and Supplementary References

Supplementary Data 1

Cartesian coordinates Pd_111_phenylethylamine

Supplementary Data 2

Cartesian coordinates Pd_111_imine

Supplementary Data 3

Cartesian coordinates Pd/(1/1/1)_partial_oxidation_phenylethylamine

Supplementary Data 4

Cartesian coordinates Pd/(1/1/1)_partial_oxidation_imine

Supplementary Data 5

Cartesian coordinates CALB_Pluronic_initial

Supplementary Data 6

Cartesian coordinates CALB_Pluronic_final

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Cao, Y., Luo, K. et al. Highly active enzyme–metal nanohybrids synthesized in protein–polymer conjugates. Nat Catal 2, 718–725 (2019). https://doi.org/10.1038/s41929-019-0305-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing