Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area


Using renewable electricity to convert CO/CO2 into liquid products is touted as a sustainable process to produce fuels and chemicals, yet requires further advances in electrocatalyst understanding, development and device integration. The roughness factor of an electrode has generally been used to increase total rates of production, although rarely as a means to improve selectivity. Here we demonstrate that increasing the roughness factor of Cu electrodes is an effective design principle to direct the selectivity of CO reduction towards multicarbon oxygenates at low overpotentials and concurrently suppressing hydrocarbon and hydrogen production. The nanostructured Cu electrodes are capable of achieving almost full selectivity towards multicarbon oxygenates at an electrode potential of only –0.23 V versus the reversible hydrogen electrode. The successful implementation of this catalytic system has enabled an excellent CO reduction performance and elucidated viable pathways to improve the energy efficiency towards liquid fuels in high-power conversion electrolysers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: COR electrode development strategy.
Fig. 2: Surface characterization of Cu nanoflower electrodes under different stages.
Fig. 3: COR by Cu nanoflower electrodes in 0.1 M KOH saturated with 1 atm of CO at ambient temperature.
Fig. 4: Activity comparison between the Cu nanoflower electrode and planar pc-Cu (ref. 22), OD-Cu (ref. 20) and NW-Cu (ref. 21).
Fig. 5: COR on several different porous Cu materials in 0.1 M KOH at a potential of ~0.33 V versus the RHE.

Data availability

The data that support the results and other findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Costentin, C., Robert, M. & Saveant, J.-M. Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 42, 2423–2436 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Gattrell, M., Gupta, N. & Co, A. Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas. Energy Convers. Manag. 48, 1255–1265 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    Gattrell, M., Gupta, N. & Co, A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 594, 1–19 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    Hori, Y. in Modern Aspects of Electrochemistry (eds Vayenas, C. G., White, RE & Gamboa-Aldeco, M. E.) 89–189 (Springer, 2008).

  5. 5.

    Hori, Y., Kikuchi, K. & Suzuki, S. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem. Lett. 14, 1695–1698 (1985).

    Article  Google Scholar 

  6. 6.

    Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Norskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    Torelli, D. A. et al. Nickel–gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal. 6, 2100–2104 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Hahn, C. et al. Synthesis of thin film AuPd alloys and their investigation for electrocatalytic CO2 reduction. J. Mater. Chem. A 3, 20185–20194 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Kuhl, K. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Schouten, K. J. P., Kwon, Y., van der Ham, C. J. M., Qin, Z. & Koper, M. T. M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2, 1902–1909 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Liu, X. et al. Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 8, 15438–15444 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Mittal, C., Hadsbjerg, C. & Blennow, P. Small-scale CO from CO2 using electrolysis. Chem. Eng. World 00, 44–46 (2017).

    Google Scholar 

  15. 15.

    Haas, T., Krause, R., Weber, R., Demler, M. & Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Roberts, F. S., Kuhl, K. P. & Nilsson, A. Electroreduction of carbon monoxide over a copper nanocube catalyst: surface structure and pH dependence on selectivity. ChemCatChem 8, 1119–1124 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Kim, Y.-G. et al. Surface reconstruction of pure-Cu single-crystal electrodes under CO-reduction potentials in alkaline solutions: a study by seriatim ECSTM-DEMS. J. Electroanal. Chem. 780, 290–295 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Calle-Vallejo, F. & Koper, M. T. M. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 52, 7282–7285 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    Hori, Y., Takahashi, R., Yoshinami, Y. & Murata, A. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101, 7075–7081 (1997).

    CAS  Article  Google Scholar 

  20. 20.

    Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Raciti, D. et al. Low-overpotential electroreduction of carbon monoxide using copper nanowires. ACS Catal. 7, 4467–4472 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Wang, L. et al. Electrochemical carbon monoxide reduction on polycrystalline copper: establishing selectivity trends for multi-carbon and oxygenate products as function of potential, pressure and pH. ACS Catal. 8, 7445–7454 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    Ren, D., Fong, J. & Yeo, B. S. The effects of currents and potentials on the selectivities of copper toward carbon dioxide electroreduction. Nat. Commun. 9, 925 (2018).

    Article  Google Scholar 

  24. 24.

    He, D., Wan, J., Suo, H. & Zhao, C. In situ facile surface oxidation method prepared ball of yarn-like copper oxide hierarchical microstructures on copper foam for high performance supercapacitor. Mater. Lett. 185, 165–168 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Xu, X., Yang, H. & Liu, Y. Self-assembled structures of CuO primary crystals synthesized from Cu(CH3COO)2–NaOH aqueous systems. CrystEngComm 14, 5289–5298 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    Zhang, W., Wen, X., Yang, S., Berta, Y. & Wang, Z. L. Single-crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature. Adv. Mater. 15, 822–825 (2003).

    CAS  Article  Google Scholar 

  27. 27.

    Zhang, W., Wen, X. & Yang, S. Controlled reactions on a copper surface: synthesis and characterization of nanostructured copper compound films. Inorg. Chem. 42, 5005–5014 (2003).

    CAS  Article  Google Scholar 

  28. 28.

    Zhang, Q. et al. CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 60, 208–337 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Yoshida, K., Wakai, C., Matubayasi, N. & Nakahara, M. NMR spectroscopic evidence for an intermediate of formic acid in the water−gas−shift reaction. J. Phys. Chem. A 108, 7479–7482 (2004).

    CAS  Article  Google Scholar 

  30. 30.

    John, J., Wang, H., Rus, E. D. & Abruña, H. D. Mechanistic studies of formate oxidation on platinum in alkaline medium. J. Phys. Chem. C 116, 5810–5820 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    Reske, R., Mistry, H., Behafarid, F., Cuenya, B. R. & Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 136, 6978–6986 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    Feng, X., Jiang, K., Fan, S. & Kanan, M. W. A direct grain-boundary–activity correlation for CO electroreduction on Cu nanoparticles. ACS Cent. Sci. 2, 169–174 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Hori, Y. et al. ‘Deactivation of copper electrode’ in electrochemical reduction of CO2. Electrochim. Acta 50, 5354–5369 (2005).

    CAS  Article  Google Scholar 

  34. 34.

    Wasmus, S., Cattaneo, E. & Vielstich, W. Reduction of carbon dioxide to methane and ethene—an on-line MS study with rotating electrodes. Electrochim. Acta 35, 771–775 (1990).

    CAS  Article  Google Scholar 

  35. 35.

    Huang, J. et al. Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction. Nat. Commun. 9, 3117 (2018).

    Article  Google Scholar 

  36. 36.

    Tang, M. T., Ulissi, Z. W. & Chan, K. Theoretical investigations of transition metal surface energies under lattice strain and CO environment. J. Phys. Chem. C 122, 14481–14487 (2018).

    CAS  Article  Google Scholar 

  37. 37.

    Kim, Y.-G., Baricuatro, J. H., Javier, A., Gregoire, J. M. & Soriaga, M. P. The evolution of the polycrystalline copper surface, first to Cu(111) and then to Cu(100), at a fixed CO2RR potential: a study by operando EC-STM. Langmuir 30, 15053 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    Hahn, C. et al. Engineering Cu surfaces for the electrocatalytic conversion of CO2: controlling selectivity toward oxygenates and hydrocarbons. Proc. Natl Acad. Sci. USA 114, 5918–5923 (2017).

    CAS  Article  Google Scholar 

  39. 39.

    Schouten, K. J. P., Qin, Z., Pérez Gallent, E. & Koper, M. T. M. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 134, 9864–9867 (2012).

    CAS  Article  Google Scholar 

  40. 40.

    Hall, A. S., Yoon, Y., Wuttig, A. & Surendranath, Y. Mesostructure-induced selectivity in CO2 reduction catalysis. J. Am. Chem. Soc. 137, 14834–14837 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Yoon, Y., Hall, A. S. & Surendranath, Y. Tuning of silver catalyst mesostructure promotes selective carbon dioxide conversion into fuels. Angew. Chem. Int. Ed. 55, 15282–15286 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Ma, M., Djanashvili, K. & Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem. Int. Ed. 55, 6680–6684 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    CAS  Article  Google Scholar 

  44. 44.

    Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

    CAS  Article  Google Scholar 

  46. 46.

    Ma, S. et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 301, 219–228 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    CAS  Article  Google Scholar 

  48. 48.

    Gurudayal et al. Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates. Energy Environ. Sci. 10, 2222–2230 (2017).

    CAS  Article  Google Scholar 

  49. 49.

    Wu, X., Bai, H., Zhang, J., Chen, F. & Shi, G. Copper hydroxide nanoneedle and nanotube arrays fabricated by anodization of copper. J. Phys. Chem. B 109, 22836–22842 (2005).

    CAS  Article  Google Scholar 

Download references


This material is based on work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the US Department of Energy under Award no. DE-SC0004993. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under Award ECCS-1542152. Additional thanks go to the Stanford NMR Facility. We thank S. Xu for the constructive discussions. L.W. thanks the Knut & Alice Wallenberg Foundation for financial support.

Author information




L.W. synthesized the Cu nanoflower electrodes, and designed and performed the electrochemistry experiments. S.A.N., C.G.M.-G., M.O. and D.C.H. conducted the electrochemistry experiments. L.W. and A.C.N. carried out the SEM and XPS measurements. A.B.W. and J.L.S. performed the TEM experiments. All the authors analysed the experimental data. T.F.J. and C.H. conceived the project and supervised the research work. L.W., C.H. and T.F.J. wrote the manuscript with input from the other authors.

Corresponding authors

Correspondence to Christopher Hahn or Thomas F. Jaramillo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17, Supplementary Tables 1–3, Supplementary Notes 1 and 2 and Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Nitopi, S., Wong, A.B. et al. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. Nat Catal 2, 702–708 (2019). https://doi.org/10.1038/s41929-019-0301-z

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing