Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Catalyst as colour indicator for endpoint detection to enable selective alkyne trans-hydrogenation with ethanol

Abstract

The stereoselective semi-hydrogenation of internal alkynes to E-alkenes is an important, but challenging, transformation, partly because of over-reduction to undesired alkanes. A stop criterion that enables determination of the endpoint of the semi-hydrogenation is thus required to eliminate this over-hydrogenation. Despite its widespread applications in analytic chemistry, the strategy of using colour change for endpoint detection is very rarely applied in catalytic organic transformations. Here we report that an iridium complex catalyses the semi-hydrogenation of internal alkynes using ethanol as the hydrogen donor to afford E-alkenes and ethyl acetate. Importantly, issues of over-reduction and stereoselection have been successfully addressed by using a colour change effect due to the shift of the catalyst resting states, thereby precisely detecting the endpoint of the reaction. This catalytic system is applicable to a wide variety of internal alkynes bearing many auxiliary functional groups, and its utility for synthesis of biologically relevant molecules has been demonstrated.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Development of catalytic methods for the selective hydrogenation of alkynes to E-alkenes with EtOH.
Fig. 2: Iridium-catalysed TH of diphenylacetylene with EtOH.
Fig. 3: Reaction profile of catalytic TH of 1a with EtOH and key catalyst resting states.
Fig. 4: E-selective TH of 1a with EtOH using the colour change to detect the endpoint.
Fig. 5: Scope of TH of alkynes to E-alkenes with EtOH.
Fig. 6: Transfer hydrogenation of alkynes containing biologically relevant skeletons.
Fig. 7: Proposed catalytic cycle.

Data availability

X-ray crystallographic data for compounds A and 8-PhOH have been deposited at the Cambridge Crystallographic Data Centre under deposition numbers 1877722 and 1877723, respectively. These data can be obtained from the Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/. All other data supporting the findings of this study are available within the Article (and Supplementary Information files) or from the corresponding author on reasonable request.

References

  1. Skoog, D. A., West, D. M., Holler F. J. & Crouch S. R. Fundamentals of Analytical Chemistry 8th edn, 371–372 (Thomson-Brooks/Cole, 2004).

  2. Crespo-Quesada, M., Cárdenas-Lizana, F., Dessimoz, A. L. & Kiwi-Minsker, L. Modern trends in catalyst and process design for alkyne hydrogenations. ACS Catal. 2, 1773–1786 (2012).

    Article  CAS  Google Scholar 

  3. Oger, C., Balas, L., Durand, T. & Galano, J. M. Are alkyne reductions chemo-, regio- and stereoselective enough to provide pure (Z)-olefins in polyfunctionalized bioactive molecules. Chem. Rev. 113, 1313–1350 (2013).

    Article  CAS  Google Scholar 

  4. Kumara Swamy, K. C., Siva Reddy, A., Sandeep, K. & Kalyani, A. Advances in chemoselective and/or stereoselective semihydrogenation of alkynes. Tetrahedron Lett. 59, 419–429 (2018).

    Article  Google Scholar 

  5. Fürstner, A. Trans-hydrogenation, gem-hydrogenation and trans-hydrometalation of alkynes: an interim report on an unorthodox reactivity paradigm. J. Am. Chem. Soc. 141, 11–24 (2019).

    Article  Google Scholar 

  6. Lindlar, H. Ein neuer Katalysator für Selektivehydrierungen. Helv. Chim. Acta 35, 446–450 (1952).

    Article  CAS  Google Scholar 

  7. Parker, G. L., Smith, L. K. & Baxendale, I. R. Development of the industrial synthesis of vitamin A. Tetrahedron 72, 1645–1652 (2016).

    Article  CAS  Google Scholar 

  8. Campbell, K. N. & Eby, L. T. The preparation of higher cis and trans olefins. J. Am. Chem. Soc. 63, 216–219 (1941).

    Article  CAS  Google Scholar 

  9. Benkeser, R. A., Schroll, G. & Sauve, D. M. Reduction of organic compounds by lithium in low molecular weight amines. II. Stereochemistry. Chemical reduction of an isolated non-terminal double bond. J. Am. Chem. Soc. 77, 3378–3379 (1955).

    Article  CAS  Google Scholar 

  10. Srimani, D., Diskin-Posner, Y., Ben-David, Y. & Milstein, D. Iron pincer complex catalyzed, environmentally benign, E-selective semi-hydrogenation of alkynes. Angew. Chem. Int. Ed. 52, 14131–14134 (2013).

    Article  CAS  Google Scholar 

  11. Karunananda, M. K. & Mankad, N. P. E-selective semi-hydrogenation of alkynes by heterobimetallic catalysis. J. Am. Chem. Soc. 137, 14598–14601 (2015).

    Article  CAS  Google Scholar 

  12. Tokmic, K. & Fout, A. R. Alkyne semihydrogenation with a well-defined nonclassical Co–H2 catalyst: a H2 spin on isomerization and E-selectivity. J. Am. Chem. Soc. 138, 13700–13705 (2016).

    Article  CAS  Google Scholar 

  13. Furukawa, S. & Komatsu, T. Selective hydrogenation of functionalized alkynes to (E)-alkenes, using ordered alloys as catalysts. ACS Catal. 6, 2121–2125 (2016).

    Article  CAS  Google Scholar 

  14. Neumann, K. T. et al. Direct trans-selective ruthenium-catalyzed reduction of alkynes in two-chamber reactors and continuous flow. ACS Catal. 6, 4710–4714 (2016).

    Article  CAS  Google Scholar 

  15. Higashida, K. & Mashima, K. E-selective semi-hydrogenation of alkynes with dinuclear iridium complexes under atmospheric pressure of hydrogen. Chem. Lett. 45, 866–868 (2016).

    Article  CAS  Google Scholar 

  16. Desai, S. P. et al. Well-defined rhodium–gallium catalytic sites in a metal–organic framework: promoter-controlled selectivity in alkyne semihydrogenation to E-alkenes. J. Am. Chem. Soc. 140, 15309–15318 (2018).

    Article  CAS  Google Scholar 

  17. Radkowski, K., Sundararaju, B. & Fürstner, A. A functional-group-tolerant catalytic trans-hydrogenation of alkynes. Angew. Chem. Int. Ed. 52, 355–360 (2013).

    Article  CAS  Google Scholar 

  18. Leutzsch, M. et al. Formation of ruthenium carbenes by gem-hydrogen transfer to internal alkynes: implications for alkyne trans-hydrogenation. Angew. Chem. Int. Ed. 54, 12431–12436 (2015).

    Article  CAS  Google Scholar 

  19. Guthertz, A. et al. Half-sandwich ruthenium carbene complexes link trans-hydrogenation and gem-hydrogenation of internal alkynes. J. Am. Chem. Soc. 140, 3156–3169 (2018).

    Article  CAS  Google Scholar 

  20. Gladiali, S. & Alberico, E. Asymmetric transfer hydrogenation: chiral ligands and applications. Chem. Soc. Rev. 35, 226–236 (2006).

    Article  CAS  Google Scholar 

  21. Samec, J. S. M., Bäckvall, J. E., Andersson, P. G. & Brandt, P. Mechanistic aspects of transition metal-catalyzed hydrogen transfer reactions. Chem. Soc. Rev. 35, 237–248 (2006).

    Article  CAS  Google Scholar 

  22. Dobereiner, G. E. & Crabtree, R. H. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem. Rev. 110, 681–703 (2010).

    Article  CAS  Google Scholar 

  23. Gunanathan, C. & Milstein, D. Bond activation and catalysis by ruthenium pincer complexes. Chem. Rev. 114, 12024–12087 (2014).

    Article  CAS  Google Scholar 

  24. Wang, D. & Astruc, D. The golden age of transfer hydrogenation. Chem. Rev. 115, 6621–6686 (2015).

    Article  CAS  Google Scholar 

  25. Hauwert, P., Maestri, G., Sprengers, J. W., Catellani, M. & Elsevier, C. J. Transfer semihydrogenation of alkynes catalyzed by a zero-valent palladium N-heterocyclic carbene complex. Angew. Chem. Int. Ed. 47, 3223–3226 (2008).

    Article  CAS  Google Scholar 

  26. Shen, R. et al. Facile regio- and stereoselective hydrometalation of alkynes with a combination of carboxylic acids and group 10 transition metal complexes: selective hydrogenation of alkynes with formic acid. J. Am. Chem. Soc. 133, 17037–17044 (2011).

    Article  CAS  Google Scholar 

  27. Broggi, J. et al. The isolation of [Pd{OC(O)H}(H)(NHC)(PR3)] (NHC = N-heterocyclic carbene) and its role in alkene and alkyne reductions using formic acid. J. Am. Chem. Soc. 135, 4588–4591 (2013).

    Article  CAS  Google Scholar 

  28. Musa, S., Ghosh, A., Vaccaro, L., Ackermann, L. & Gelman, D. Efficient E-selective transfer semihydrogenation of alkynes by means of ligand-metal cooperating ruthenium catalyst. Adv. Synth. Catal. 357, 2351–2357 (2015).

    Article  CAS  Google Scholar 

  29. Kusy, R. & Grela, K. E- and Z-selective transfer semihydrogenation of alkynes catalyzed by standard ruthenium olefin metathesis catalysts. Org. Lett. 18, 6196–6199 (2016).

    Article  CAS  Google Scholar 

  30. Fu, S. et al. Ligand-controlled cobalt-catalyzed transfer hydrogenation of alkynes: stereodivergent synthesis of Z- and E-alkenes. J. Am. Chem. Soc. 138, 8588–8594 (2016).

    Article  CAS  Google Scholar 

  31. Brzozowska, A. et al. Highly chemo- and stereoselective transfer semihydrogenation of alkynes catalyzed by a stable, well-defined manganese(ii) complex. ACS Catal. 8, 4103–4109 (2018).

    Article  CAS  Google Scholar 

  32. Shirakawa, E., Otsuka, H. & Hayashi, T. Reduction of alkynes into 1,2-dideuterioalkenes with hexamethyldisilane and deuterium oxide in the presence of a palladium catalyst. Chem. Commun. 2005, 5885–5886 (2005).

    Article  Google Scholar 

  33. Zweifel, T., Naubron, J. V., Büttner, T., Ott, T. & Grützmacher, H. Ethanol as hydrogen donor: highly efficient transfer hydrogenations with rhodium(i) amides. Angew. Chem. Int. Ed. 47, 3245–3249 (2008).

    Article  CAS  Google Scholar 

  34. Liu, W. P. et al. Efficient asymmetric transfer hydrogenation of ketones in ethanol with chiral iridium complexes of spiroPAP ligands as catalysts. Chem. Commun. 51, 6123–6125 (2015).

    Article  CAS  Google Scholar 

  35. Farrar-Tobar, R. A. et al. Base-free iron catalyzed transfer hydrogenation of esters using EtOH as hydrogen source. Angew. Chem. Int. Ed. 58, 1129–1133 (2019).

    Article  CAS  Google Scholar 

  36. Siva Reddy, A. & Kumara Swarmy, K. C. Ethanol as a hydrogenating agent: palladium-catalyzed stereoselective hydrogenation of ynamides to give enamides. Angew. Chem. Int. Ed. 56, 6984–6988 (2017).

    Article  CAS  Google Scholar 

  37. Tani, K., Iseki, A. & Yamagata, T. Efficient transfer hydrogenation of alkynes and alkenes with methanol catalysed by hydrido(methoxo)iridium(iii) complexes. Chem. Commun. 1999, 1821–1822 (1999).

    Article  Google Scholar 

  38. Wang, Y. et al. Transfer hydrogenation of alkenes using ethanol catalyzed by a NCP pincer iridium complex: scope and mechanism. J. Am. Chem. Soc. 140, 4417–4429 (2018).

    Article  CAS  Google Scholar 

  39. Xu, W. et al. Thermochemical alkane dehydrogenation catalyzed in solution without the use of a hydrogen acceptor. Chem. Commun. 1997, 2273–2274 (1997).

    Article  Google Scholar 

  40. Göttker-Schnetmann, I., White, P. & Brookhart, M. Iridium bis(phosphinite) p-XPCP pincer complexes: highly active catalysts for the transfer dehydrogenation of alkanes. J. Am. Chem. Soc. 126, 1804–1811 (2004).

    Article  Google Scholar 

  41. Jia, X. & Huang, Z. Conversion of alkanes to linear alkylsilanes using an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylation. Nat. Chem. 8, 157–161 (2016).

    Article  CAS  Google Scholar 

  42. Buckle, D. R. Novel compounds. US patent 4,713,486 (1987).

  43. Herrmann, W. A. & Prinz, M. in Applied Homogeneous Catalysis with Organometallic Compounds 2nd edn (eds Cornils, B. & Herrmann, W. A.) 1119–1130 (Wiley, 2002).

  44. Renkema, K. B., Kissin, Y. V. & Goldman, A. S. Mechanism of alkane transfer-dehydrogenation catalyzed by a pincer-ligated iridium complex. J. Am. Chem. Soc. 125, 7770–7771 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Key R&D Program of China (2016YFA0202900 and 2015CB856600), the National Natural Science Foundation of China (21825109, 21821002 and 21432011), the Chinese Academy of Sciences (XDB20000000 and QYZDB-SSW-SLH016) and the Science and Technology Commission of Shanghai Municipality (17JC1401200).

Author information

Authors and Affiliations

Authors

Contributions

Z.H. and Y.W. developed the concept of using the transition metal catalyst as a colour indicator for the selective semi-hydrogenation of alkynes to E-alkenes with EtOH. Y.W. and Z.-D.H. identified the substrate scope. Y.W. and Z.-D.H. conducted the mechanistic investigations. Z.H. conceived and supervised the project and prepared the manuscript.

Corresponding author

Correspondence to Zheng Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Supplementary Figs. 1–79, Supplementary Tables 1–6, Supplementary references

Complex A

Crystallographic data for complex A

Complex 8-PhOH

Crystallographic data for complex 8-PhOH

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Huang, Z. & Huang, Z. Catalyst as colour indicator for endpoint detection to enable selective alkyne trans-hydrogenation with ethanol. Nat Catal 2, 529–536 (2019). https://doi.org/10.1038/s41929-019-0299-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0299-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing